Advertisement

Journal of Applied Mechanics and Technical Physics

, Volume 59, Issue 6, pp 1036–1048 | Cite as

Determining the Thermo-Electro-Magneto-Elastic State of Multiply Connected Piecewise-Homogeneous Piezoelectric Plates

  • S. A. KaloerovEmail author
  • E. S. Glushankov
Article
  • 1 Downloads

Abstract

A method for studying the thermo-electro-magneto-elastic state of a multiply connected piecewise-homogeneous piezoelectric plate under the action of a linear heat flux is proposed. The solution of a problem using complex potentials and the generalized least squares method is reduced to solving a system of linear algebraic equations with respect to unknown expansion coefficients of functions into Laurent series and Faber polynomials. For the case of a plate with one inclusion, an exact analytical solution of the problem is obtained. The results of the numerical studies, which determine the effect of the electric and magnetic properties of the plate materials and inclusions and their location on the main characteristics of the thermo-electro-magneto-elastic state are described.

Keywords

linear heat flux piezoelectric plate inclusions temperature stresses stresses and inductions of the electromagnetic field generalized least squares method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Berlincourt, D. R. Curran, and H. Jaffe, “Piezoelectric and Piezomagnetic Materials and Their Function in Transducers,” in Physical Acoustics, Ed. by W. P. Mason (Academic Press, New York, 1964).Google Scholar
  2. 2.
    I. S. Zheludev, Physics of Crystalline Dielectrics (Nauka, Moscow, 1968; Plenum Press, University of Michigan, 1971).CrossRefGoogle Scholar
  3. 3.
    L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York (1984).Google Scholar
  4. 4.
    J. S. Yang and G. A. Maugin, Mechanics of Electromagnetic Solids (Springer, 2003).CrossRefGoogle Scholar
  5. 5.
    V. Z. Parton and B. A. Kudryavtsev, Electromagnetoelasticity: Piezoelectrics and Electrically Conductive Solids (Nauka, Moscow, 1988; Gordon and Breach, 1988).Google Scholar
  6. 6.
    S. A. Kaloerov and E. S. Goryanskaya, “Two-Dimensional Stress–Strain State of a Multiply Connected Solid,” in Mechanics of Composites, Vol. 7: Stress Concentration (A.S.K., Kiev, 1998) [in Russian].Google Scholar
  7. 7.
    S. A. Kaloerov and Yu. S. Antonov, “Thermoelastic State of an Anisotropic Plate with Holes and Cracks under the Action of a Linear Heat Flux and Temperature on Its Contours,” Teor. Prikl. Mekh. 40, 102–116 (2005).Google Scholar
  8. 8.
    S. A. Kaloerov and O. A. Sorochan, “Plane Problem of Thermoelectromagnetoelasticity for Multiply Connected Bodies,” Prikl. Mekh. 45 (4), 81–91 (2009) [Int. Appl. Mech. 45 (4), 413–423 (2009)].MathSciNetzbMATHGoogle Scholar
  9. 9.
    S. A. Kaloerov and D. A. Dobryak, “Thermoelastic State of a Piecewise-Homogeneous Anisotropic Plate,” Visn. Donets. Univ., Ser. A: Prirod. Nauki 2, 77–88 (2006).Google Scholar
  10. 10.
    V. V. Voevodin, Computational Bases of Linear Algebra (Nauka, Moscow, 1977) [in Russian].Google Scholar
  11. 11.
    G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations (Prentice Hall, 1977).zbMATHGoogle Scholar
  12. 12.
    Z. Drmač and K. Veselič, “New Fast and accurate Jacobi SVD Algorithm. 1,” SIAM J. Matrix Anal. Appl. 29 (4), 1322–1342 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Z. Drmač and K. Veselič, “New Fast and Accurate Jacobi SVD Algorithm. 2,” SIAM J. Matrix Anal. Appl. 29 (4), 1343–1362 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    V. I. Isaev and V. P. Shapeev, “Development of the Collocation and Least Squares Method,” Tr. Inst. Mat. Mekh. UrO RAN 14 (1), 41–60 (2008).MathSciNetGoogle Scholar
  15. 15.
    V. Shapeev, “Collocation and Least Residuals Method and Its Applications,” EPJ Web Conf. 108, 01009-p.1–01009-p.12 (2016).Google Scholar
  16. 16.
    S. A. Kaloerov, “Potential Electromagnetic Fields in Piezoelectric Plate under Mechanical, Electromagnetic, and Thermal Actions,” Vestn. Donets. Nats. Univ., Ser. A: Estestv. Nauki, No. 4, 19–34 (2016).Google Scholar
  17. 17.
    S. A. Kaloerov and E. S. Glushankov, “Action of a Linear Heat Flux in Piezoelectric Plates,” Vestn. Donets. Nats. Univ., Ser. A: Estestv. Nauki, No. 1, 12–25 (2017).Google Scholar
  18. 18.
    S. A. Kaloerov, E. V. Avdyushina, and A. B. Mironenko, Stress Concentration in Multiply Connected Isotropic Plates (Izd. Donets. Nats. Univ., Donetsk, 2013) [in Russian].Google Scholar
  19. 19.
    W.-Y. Tian and U. Gabbert, “Multiple Crack Interaction Problem in Magnetoelectroelastic Solids,” Europ. J. Mech. A 23, 599–614 (2004).CrossRefzbMATHGoogle Scholar
  20. 20.
    P.-F. Hou, G.-H. Teng, and H.-R. Chen, “Three-Dimensional Green’s Function for a Point Heat Source in Two-Phase Transversely Isotropic Magneto-Electro-Thermo-Elastic Material,” Mech. Mater. 41 (3), 329–338 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Donetsk National UniversityDonetskUkraine

Personalised recommendations