Advertisement

Journal of Applied Mechanics and Technical Physics

, Volume 59, Issue 6, pp 1008–1014 | Cite as

Effect of Radiative Heat Transfer and Boundary Conditions on the Airflow and Temperature Distribution Inside a Heated Tunnel Greenhouse

  • S. ZeroualEmail author
  • S. Bougoul
  • H. Benmoussa
Article
  • 16 Downloads

Abstract

The airflow and temperature distribution in a heated tunnel greenhouse in the presence of a row of tomato plants owing to heat dissipation from heating pipes is numerically studied with the use of the Fluent-CFD software. The fully turbulent airflow in the greenhouse induced by buoyancy forces is modeled by using the k–ε model. The radiative heat transfer is taken into account by using the model of discrete ordinates. Two types of boundary conditions expressing heat losses at the greenhouse cover are treated: pure convection and convection combined with thermal radiation.

Keywords

airflow temperature radiative heat transfer tunnel greenhouse CFD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Rico-Garcia, I. L. Lopez-Cruz, G. Herrera-Ruiz, et al., “Effect of Temperature on Greenhouse Natural Ventilation under Hot Conditions: Computational Fluid Dynamics Simulations,” J. Appl. Sci. 8, 4543–4551 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    A. Shukla, G. N. Tiwari, and M. S. Sodha, “Energy Conservation Potential of Inner Thermal Curtain in an Even Span Greenhouse,” Trends Appl. Sci. Res. 1, 542–552 (2006).CrossRefGoogle Scholar
  3. 3.
    N. Kumari, G. N. Tiwari, and M. S. Sodha, “Thermal Modelling for Greenhouse Heating by Using Packed Bed,” Int. J. Agricultural Res. 1, 373–383 (2006).CrossRefGoogle Scholar
  4. 4.
    J. E. Fernandez and B. J. Bailey, “Measurement and Prediction of Greenhouse Ventilation Rates,” Agriculture Forest Meteorol. 58, 229–245 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    A. Kumar, G. N. Tiwari, S. Kumar, and M. Pandey, “Role of Greenhouse Technology in Agricultural Engineering,” Int. J. Agricultural Res. 1, 364–372 (2006).CrossRefGoogle Scholar
  6. 6.
    L. D. Albright, “Production Solar Greenhouse,” Energy World Agriculture 4, 213–232 (1991).Google Scholar
  7. 7.
    J. C. Roy, T. Boulard, and Y. Bailly, “Etude Expérimentale de la Convection Naturelle Dans une Serre Chauffée,” in Congrès Français de Thermique (SFT), Lyon (France), May 15–17, 2000 (Elsevier, Paris–Amsterdam, 2000), pp. 11–17.Google Scholar
  8. 8.
    F. Z. Azil, Etude des Paramètres Climatiques Sous Serres Chauffées en Présence de la Plante, These de Magistere (Batna, Algérie, 2006).Google Scholar
  9. 9.
    S. A. Ould Khaoua, P. E. Bournet, C. Migeon, et al., “Analysis of Greenhouse Ventilation Efficiency Based on Computational Fluid Dynamics,” Biosystems Eng. 95 (1), 83–98 (2006).CrossRefGoogle Scholar
  10. 10.
    P. E. Bournet and T. Boulard, “Effect of Ventilator Configuration on the Distributed Climate of Greenhouses: A Review of Experimental and CFD Studies,” Comput. Electron. Agriculture 74, 195–217 (2010).CrossRefGoogle Scholar
  11. 11.
    P. E. Bournet, S. A. Ould Khaoua, and T. Boulard, “Numerical Prediction of the Effect of Vent Arrangements on the Ventilation and Energy Transfers in a Multi-Span Glasshouse Using a Bi-band Radiation Model,” Biosystems Eng. 98, 224–234 (2007).CrossRefGoogle Scholar
  12. 12.
    S. V. Patankar, Numerical Heat Transfer and Fluid Flow (McGraw-Hill, Washington, New York, 1980).zbMATHGoogle Scholar
  13. 13.
    A. Mezhrab, L. Elfarh, H. Naji, and D. Lemonnier, “Computation of Surface Radiation and Natural Convection in a Heated Horticulture Greenhouse,” Appl. Energy 87, 894–900 (2010).CrossRefGoogle Scholar
  14. 14.
    R. Haxaire, “Caractérisation et Modélisation des Ecoulements d’air Dans une Serre,” Thèse de Doctorat (Nice, France, 1999).Google Scholar
  15. 15.
    A. M. Abdel-Ghany and T. Kozai, “On the Determination of the Overall Heat Transmission Coefficient and Soil Heat Flux for a Fog Cooled, Naturally Ventilated Greenhouse: Analysis of Radiation and Convection Heat Transfer,” Energy Convers. Management 47, 2612–2628 (2006).CrossRefGoogle Scholar
  16. 16.
    F. P. Incropera and D. P. DeWitt Fundamentals of Heat and Mass Transfer (Wiley, New York, 1990).Google Scholar
  17. 17.
    G. Papadakis, A. Frangoudakis, and S. Kyritsis, “Mixed, Forced and Free Convection Heat Transfer at the Greenhouse Cover,” J. Agricultur. Eng. Res. 51, 191–205 (1992).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.LPEA LaboratoryUniversité de Batna 1BatnaAlgeria
  2. 2.Université de Batna 2BatnaAlgeria

Personalised recommendations