Advertisement

Journal of Applied Mechanics and Technical Physics

, Volume 59, Issue 6, pp 992–1003 | Cite as

Asymptotic Formula for the Spectrum of the Linear Problem Describing Periodic Polymer Flows in an Infinite Channel

  • A. M. BlokhinEmail author
  • D. L. Tkachev
  • A. V. Yegitov
Article
  • 2 Downloads

Abstract

In this paper, we study a new rheological model (a modification of the well-known Pokrovskii–Vinogradov model) which is shown by computational experiments to take into account the nonlinear effects occurring during melt flows and polymer solutions in regions with complex boundary geometry. For the case where the main solution is an analogue of the Poiseuille flow in an infinite flat channel (viscoelastic polymer fluid considered), an asymptotic formula is obtained for the distribution of points of the spectrum of the linear problem. It is shown that small perturbations have the additional property of periodicity in the variable that runs along the axis of the channel.

Keywords

rheological model polymer medium Poiseuille type flow Lyapunov stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. A. Altukhov, I. E. Golovicheva, and G. V. Pyshnograi, “Molecular Approach in the Dynamics of Linear Polymers: Theory and Numerical Experiment,” Izv. Ross. Acad. Nauk, Mekh. Zhidk. Gaza, No. 1, 3–13 (2000).Google Scholar
  2. 2.
    G. V. Pyshnograi, V. N. Pokrovskii, Yu. G. Yanovskii, et al., “The Constitutive Equation of Nonlinear Viscoelastic (Polymeric) Media in the Zero Approximation for Molecular-Theory Parameters and Consequences for Shear and Tension,” Dokl. Akad. Nauk 355 (9), 612–615 (1994).Google Scholar
  3. 3.
    V. S. Volkov and G. V. Vinogradov, “Molecular Theories of Nonlinear Viscoelasticity of Polymers,” Rheol. Acta 23 (3), 231–237 (1984).CrossRefGoogle Scholar
  4. 4.
    Yu. A. Altukhov, A. S. Gusev, M. A. Makarova, and G. V. Pyshnograi, “Generalization of the Poiseuille Law for Plane–Parallel Flow of Viscoelastic Media,” Mekh. Kompoz. Mater. Konstr. 13 (4), 581–590 (2007).Google Scholar
  5. 5.
    Yu. A. Altukhov and G. V. Pyshnograi, “Input Flows in Channel 4: 1 of Fluid Linear Polymers,” Mekh. Kompoz. Mater. Konstr. 7 (1), 16–23 (2001).Google Scholar
  6. 6.
    A. M. Blokhin, A. V. Egitov, and D. L. Tkachev, “Linear Instability of Solutions of a Mathematical Model Describing Polymer Flows in an Infinite Channel,” Zh. Vychisl. Mat. Mat. Fiz. 55 (5), 850–875 (2015).MathSciNetGoogle Scholar
  7. 7.
    A. M. Blokhin and D. L. Tkachev, “Linear Asymptotic Instability of a Stationary Flow of Polymeric Medium in a Plane Channel in the Case of Periodic Perturbations,” Sib. Zh. Indust. Mat. 17 (3), 13–25 (2014).zbMATHGoogle Scholar
  8. 8.
    Yu. A. Altukhov, A. S. Gusev, and G. V. Pyshnograi, Introduction to the Mesoscopic Theory of Flowing Polymer Systems (Alt. Gos. Ped. Akad., Barnaul, 2012) [in Russian].Google Scholar
  9. 9.
    A. M. Blokhin and N. V. Bambaeva, Finding Poiseuille and Couette Type Solutions for the Equations of Incompressible Viscoelastic Polymer Fluid (Vestn. Novosib. Gos. Univ., Ser. Mat., Mekh. Informatika 11 (2), 3–14 (2011).Google Scholar
  10. 10.
    E. Wassner, M. Schmidt, and H. Munstedt, “Low-Density-Polyethylene Melt into a Slit Die: An Experimental Study by Laser-Doppler Velocimetry,” J. Rheol. 49 (6), 1339–1353 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    L. G. Loitsyanskii, Mechanics of Liquids and Gases (Nauka, Moscow, 1979; Pergamon Press, Oxford–New York, 1966).zbMATHGoogle Scholar
  12. 12.
    S. K. Godunov, Equations of Mathematical Physics (Nauka, Moscow, 1979) [in Russian].Google Scholar
  13. 13.
    G. D. Birkhoff, Collected Mathematical Papers (Amer. Math. Soc., New York, 1950).zbMATHGoogle Scholar
  14. 14.
    K. V. Brushlinskii, “On the Growth of the Solution of a Mixed Problem in the Case of Incomplete Eigenfunctions,” Izv. Akad. Nauk SSSR, Ser. Mat., No. 23, 893–912 (1959).Google Scholar
  15. 15.
    S. A. Lomov, Introduction to the General Theory of Singular Perturbations (Nauka, Moscow, 1981) [in Russian].zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. M. Blokhin
    • 1
    • 2
    Email author
  • D. L. Tkachev
    • 1
    • 2
  • A. V. Yegitov
    • 1
    • 2
  1. 1.Sobolev Institute of Mathematics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations