On the Impact of Flow-Diverters on the Hemodynamics of Human Cerebral Aneurysms

  • D. V. ParshinEmail author
  • Yu. O. Kuyanova
  • D. S. Kislitsin
  • U. Windberger
  • A. P. Chupakhin


The impact of flow-diverters used for cerebral aneurysm treatment on human brain hemodynamics was evaluated qualitatively and quantitatively. Numerical simulation of flow-diverter placement in cerebral vessels with aneurysms was carried out for the case history of a real patient using the commercial ANSYS 17.2 package with different (Newtonian and non-Newtonian) hydrodynamic models for blood rheology in different parts of the vessel and aneurysm, which is due to experimental data. It is shown that after flow-diverter placement, the blood flow through the artery segment containing the aneurysm neck decreases, resulting in a redistribution of the cerebral blood flow, which becomes close to the blood flow in healthy subjects. Changes in wall shear stresses in the flow-diverter region are indicative of possible aneurysm recanalization.


cerebral aneurysm flow-diverter brain hemodynamics reconstruction of DICOM images non-Newtonian blood rheology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “What is an Aneurysm?” Amer. Association of Neurological Surgeons,” Scholar
  2. 2.
    Katsuhito Yasuno, Mehmet Bakircioğlu, Siew-Kee Low, et al., “Common Variant near the Endothelin Receptor Type A (EDNRA) Gene is Associated with Intracranial Aneurysm Risk,” Proc. National Acad. Sci. 108 (49), 19707–19712 (2011); DOI: 10.1073/pnas.1117137108.ADSCrossRefGoogle Scholar
  3. 3.
    G. J. Rinkel, M. Djibuti, and A. Algra, “Prevalence and Risk of Rupture of Intracranial Aneurysms: A Systematic Review,” Stroke 29, 251–256 (1998). DOI: 10.1161/01.STR.29.1.251.CrossRefGoogle Scholar
  4. 4.
    L. Pierot and A. K. Wakhloo, “Endovascular Treatment of Intracranial Aneurysms,” Stroke 44, 2046–2054 (2013). DOI: 10.1161/STROKEAHA.113.000733.CrossRefGoogle Scholar
  5. 5.
    C. Weinkauf, E. George, and W. Zhou, “Open Versus Endovascular Aneurysm Repair Trial Review,” Surgery 162 (5), 974–978 (2017); DOI: 10.1016/j.surg.2017.04.009.CrossRefGoogle Scholar
  6. 6.
    Y. Wang, S. Song, G. Zhou, et al., “Strategy of Endovascular Treatment for Renal Artery Aneurysms,” Clinic. Radiology 73 (4), 414.e1–414.e5 (2018); DOI: 10.1016/j.crad.2017.11.009.CrossRefGoogle Scholar
  7. 7.
    N. Lin, A. M. Brouillard, K. M. Keigher, et al., “Utilization of Pipeline Embolization Device for Treatment of Ruptured Intracranial Aneurysms: US Multicenter Experience,” J. Neurointerv. Surgery 7, 808–815 (2015). DOI: 10.1136/neurintsurg-2014-011320.CrossRefGoogle Scholar
  8. 8.
    N. Lin, A. M. Brouillard, C. Krishna, et al., “Use of Coils in Conjunction with the Pipeline Embolization Device for Treatment of Intracranial Aneurysms,” Neurosurgery 76 (2), 142–149 (2015); DOI: 10.1227/NEU.0000000000000579.CrossRefGoogle Scholar
  9. 9.
    H. Tanemura, F. Ishida, Y. Miura, et al., “Changes in Hemodynamics after Placing Intracranial Stents,” Neurol. Med. Chirurgica 53, 171–178 (2013). DOI: 10.2176/nmc.53.171.CrossRefGoogle Scholar
  10. 10.
    C. Wang, Z. Tian, J. Liu, et al., “Hemodynamic Alterations after Stent Implantation in 15 Cases of Intracranial Aneurysm,” Acta Neurochir. 158 (4), 811–819 (2016); DOI: 10.1007/s00701-015-2696-x.CrossRefGoogle Scholar
  11. 11.
    N. Lv, W. Cao, I. Larrabide, et al., “Hemodynamic Changes Caused by Multiple Stenting in Vertebral Artery Fusiform Aneurysms: A Patient-Specific Computational Fluid Dynamics Study,” Amer. J. Neuroradiology 39 (1), 118–122 (2018); DOI: 10.3174/ajnr.A5452.CrossRefGoogle Scholar
  12. 12.
    N. A. Vorobtsova, A. A. Yanchenko, A. A. Cherevko, et al., “Modelling of Cerebral Aneurysm Parameters under Stent Installation,” Russ. J. Numer. Anal. Math. Modelling 28 (5), 505–516 (2013); DOI: 10.1515/rnam-2013- 0028.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    D. V. Parshin, I. O. Kuianova, A. S. Yunoshev, et al., “On the Mechanics of Cerebral Aneurysms: Experimental Research and Numerical Simulation,” J. Phys.: Conf. Ser. 894, 012071 (2017); DOI: 10.1088/1742- 6596/894/1/012071.Google Scholar
  14. 14.
    A. K. Khe, A. P. Chupakhin, A. A. Cherevko, et al., “Viscous Dissipation Energy As a Risk Factor in Multiple Cerebral Aneurysms,” Russ. J. Numer. Anal. Math. Modelling 30 (5), 277–287 (2015); Scholar
  15. 15.
    A. A. Yanchenko, A. A. Cherevko, A. P. Chupakhin, et al., “Nonstationary Hemodynamics Modelling in a Cerebral Aneurysm of a Blood Vessel,” Russ. J. Numer. Anal. Math. Modelling 29 (5), 307–317 (2014); DOI: 10.1515/rnam-2015-0025.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    S. Dhar, M. Tremmel, J. Mocco, et al., “Morphology Parameters for Intracranial Aneurysm Rupture Risk Assessment,” Neurosurgery 63 (2), 185–197 (2008); DOI: 10.1227/01.NEU.0000316847.64140.81.CrossRefGoogle Scholar
  17. 17.
    A. E. Lindgren, M. I. Kurki, A. Riihinen, et al., “Type 2 Diabetes and Risk of Rupture of Saccular Intracranial Aneurysm in Eastern Finland,” Diabetes Care 36 (7), 2020–2026 (2013); DOI: 10.2337/dc12-1048.CrossRefGoogle Scholar
  18. 18.
    Y. Ren, G. Z. Chen, Z. Liu, et al., “Reproducibility of Image Based Computational Models of Intracranial Aneurysm: A Comparison between 3D Rotational Angiography, CT Angiography and MR Angiography,” Biomed. Eng. 15 (2016); DOI: 10.1186/s12938-016-0163-4.Google Scholar
  19. 19.
    P. A. Yushkevich, J. Piven, H. C. Hazlett, et al., “User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability,” Neuroimage 31, 1116–1128 (2006). DOI: 10.1016/j.neuroimage.2006.01.015.CrossRefGoogle Scholar
  20. 20.
    T. W. Peach, M. Ngoepe, K. Spranger, et al., “Personalizing Flow-Diverter Intervention for Cerebral Aneurysms: From Computational Hemodynamics to Biochemical Modeling,” Int. J. Numer. Meth. Biomed. Eng. 30, 1387–1407 (2014). DOI: 10.1002/cnm.2663.CrossRefGoogle Scholar
  21. 21.
    J. R. Cebral, F. Mut, D. Sforza, et al., “Clinical Application of Image-Based CFD for Cerebral Aneurysms,” Int. J. Numer. Methods Biomed. Eng. 27, 977–992 (2011). DOI: 10.1002/cnm.1373.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    M. Raschi, F. Mut, R. Löhner, and J. R. Cebral, “Strategy for Modeling Flow Diverters in Cerebral Aneurysms as a Porous Medium,” Int. J. Numer. Methods Biomed. Eng. 30 (9), 909–925 (2014); DOI: 10.1002/cnm.2635.CrossRefGoogle Scholar
  23. 23.
    R. E. Rumbaut, “Platelet–Vessel Wall Interactions in Hemostasis and Thrombosis,” Ed. by R. E. Rumbaut, P. Thiagarajan (Morgan and Claypool Life Sci., San Rafael, 2010).Google Scholar
  24. 24.
    O. K. Baskurt, M. R. Hardeman, M. W. Rampling, and H. J. Meiselman, Handbook of Hemorheology and Hemodynamics Biomedical and Health Research (IOS Press, Amsterdam, 2007); Scholar
  25. 25.
    A. Skiadopoulos, P. Neofytou, and Ch. Housiadas, “Comparison of Blood Rheological Models in Patient Specific Cardiovascular System Simulations,” J. Hydrodynamics 29 (2), 293–304 (2017); DOI: 10.1016/S1001- 6058(16)60739-4.ADSCrossRefGoogle Scholar
  26. 26.
    G. Mach, C. Sherif, U. Windberger, and A. Gruber, “A Non-Newtonian Model for Blood Flow behind a Flow Diverting Stent,” Scholar
  27. 27.
    W. J. van Rooij and M. Sluzewski, “Opinion: Imaging Follow-up after Coiling of Intracranial Aneurysms,” Amer. J. Neuroradiology 30 (9), 1646–1648 (2009); DOI: 10.3174/ajnr.A1673.CrossRefGoogle Scholar
  28. 28.
    K. Orlov, D. Kislitsin, N. Strelnikov, et al., “Experience Using Pipeline Embolization Device with Shield Technology in a Patient Lacking a Full Postoperative Dual Antiplatelet Therapy Regimen,” Intervent. Neuroradiol 24 (3), 270–273 (2018); DOI: 10.1177/1591019917753824.CrossRefGoogle Scholar
  29. 29.
    L. Zarrinkoob, K. Ambarki, A. Wahlin, et al., “Blood Flow Distribution in Cerebral Arteries,” J. Cerebral Blood Flow Metabolism 35 (4), 648–654 (2015); DOI: 10.1038/jcbfm.2014.241.CrossRefGoogle Scholar
  30. 30.
    A. K. Khe, A. A. Cherevko, A. P. Chupakhin, et al., “Monitoring of Hemodynamics of Brain Vessels,” Prikl. Mekh. Tekh. Fiz. 58 (5), 7–16 (2017) [J. Appl. Mech. Tech. Phys. 58 (5), 763–770 (2017)]; DOI: 10.1134/S0021894417050017.MathSciNetGoogle Scholar
  31. 31.
    A. Chun On Tsang, S. S. M. Lai, W. C. Chung, et al., “Blood Flow in Intracranial Aneurysms Treated with Pipeline Embolization Devices: Computational Simulation and Verification with Doppler Ultrasonography on Phantom Models,” Ultrasonography 34 (2), 98–108 (2015); DOI: 10.14366/usg.14063.CrossRefGoogle Scholar
  32. 32.
    L. Goubergrits, J. Schaller, U. Kertzscher, et al., “Hemodynamic Impact of Cerebral Aneurysm Endovascular Treatment Devices: Coils and Flow Diverters,” Expert Rev. Med. Devices. 11 (4), 361–373 (2014); DOI: 10.1586/17434440.2014.925395.CrossRefGoogle Scholar
  33. 33.
    C. S. Ogilvy, M. H. Chua, M. R. Fusco, et al., “Stratification of Recanalization for Patients with Endovascular Treatment of Intracranial Aneurysms,” Neurosurgery 76 (4), 390–395 (2015); DOI: 10.1227/NEU.0000000000000651.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • D. V. Parshin
    • 1
    • 2
    Email author
  • Yu. O. Kuyanova
    • 1
    • 2
  • D. S. Kislitsin
    • 3
  • U. Windberger
    • 4
  • A. P. Chupakhin
    • 1
    • 2
  1. 1.Lavrent’ev Institute of Hydrodynamics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk National Research State UniversityNovosibirskRussia
  3. 3.Meshalkin National Medical Research CenterNovosibirskRussia
  4. 4.Center for Biomedical Research Vienna Medical UniversityViennaAustria

Personalised recommendations