Advertisement

Universal Bottleneck for Thermal Relaxation in Disordered Metallic Films

  • 13 Accesses

Abstract

We study the heat relaxation in current biased metallic films in the regime of strong electron-phonon coupling. A thermal gradient in the direction normal to the film is predicted, with a spatial temperature profile determined by the temperature-dependent heat conduction. In the case of strong phonon scattering the heat conduction occurs predominantly via the electronic system and the profile is parabolic. This regime leads to the linear dependence of the noise temperature as a function of voltage bias, in spite of the fact that all the dimensions of the film are large compared to the electron-phonon relaxation length. This is in stark contrast to the conventional scenario of relaxation limited by the electron-phonon scattering rate. A preliminary experimental study of a 200 nm thick NbN film indicates the relevance of our model for materials used in superconducting nanowire single-photon detectors.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1.

    C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, Supercond. Sci. Technol. 25(6), 063001 (2012).

  2. 2.

    I. Holzman and Y. Ivry, Advanced Quantum Technologies 2(3–4), 1800058 (2019).

  3. 3.

    F. Marsili, M. J. Stevens, A. Kozorezov, V. B. Verma, C. Lambert, J. A. Stern, R. D. Horansky, S. Dyer, S. Duff, D. P. Pappas, A. E. Lita, M. D. Shaw, R. P. Mirin, and S. W. Nam, Phys. Rev. B 93(9), 094518 (2016).

  4. 4.

    L. Zhang, L. You, X. Yang, J. Wu, C. Lv, Q. Guo, W. Zhang, H. Li, W. Peng, Z. Wang, and X. Xie, Sci. Rep. 8(1), 1486 (2018).

  5. 5.

    T. M. Klapwijk and A. V. Semenov, IEEE Trans. Terahertz Sci. Technology 7(6), 627 (2017).

  6. 6.

    I. Tamir, A. Benyamini, E. J. Telford, F. Gorniaczyk, A. Doron, T. Levinson, D. Wang, F. Gay, B. Sacépé, J. Hone, K. Watanabe, T. Taniguchi, C. R. Dean, A. N. Pasupathy, and D. Shahar, Science Advances 5(3), eaau3826 (2019).

  7. 7.

    D. Yu. Vodolazov, Phys. Rev. Appl. 7, 034014 (2017).

  8. 8.

    A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, J. Appl. Phys. 108, 084507 (2010).

  9. 9.

    F. Marsili, F. Najafi, C. Herder, and K. K. Berggren, Appl. Phys. Lett. 98, 093507 (2011).

  10. 10.

    L. Zhang, L. You, X. Yang, Y. Tang, M. Si, K. Yan, W. Zhang, H. Li, H. Zhou, W. Peng, and Z. Wang, Appl. Phys. Lett. 115, 132602 (2019).

  11. 11.

    E. Baeva, M. Sidorova, A. Korneev, K. Smirnov, A. Divochy, P. Morozov, P. Zolotov, Y. Vakhtomin, A. Semenov, T. Klapwijk, V. Khrapai, and G. Goltsman, Phys. Rev. Appl. 10, 064063 (2018).

  12. 12.

    D. Rall, P. Probst, M. Hofherr, S. Wünsch, K. Il’in, U. Lemmer, and M. Siegel, J. Phys. Conf. Ser. 234, 042029 (2010).

  13. 13.

    A. Kardakova, M. Finkel, D. Morozov, V. Kovalyuk, P. An, C. Dunscombe, M. Tarkhov, P. Mauskopf, T. M. Klapwijk, and G. Goltsman, Appl. Phys. Lett. 103, 252602 (2013).

  14. 14.

    M. V. Sidorova, A. G. Kozorezov, A. V. Semenov, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, G. M. Chulkova, and G. N. Goltsman, Phys. Rev. B 97, 184512 (2018).

  15. 15.

    M. Sidorova, A. Semenov, H.-W. Hübers, K. Ilin, M. Siegel, I. Charaev, M. Moshkova, N. Kaurova, G. N. Goltsman, X. Zhang, and A. Schilling, arXiv:1907.05039.

  16. 16.

    R. C. Zeller and R. O. Pohl, Phys. Rev. B 4, 2029 (1971).

  17. 17.

    K. E. Nagaev, Phys. Rev. B 52, 4740 (1995).

  18. 18.

    V. I. Kozub and A. M. Rudin, Phys. Rev. B 52, 7853 (1995).

  19. 19.

    S. U. Piatrusha, V. S. Khrapai, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and E. S. Tikhonov, Phys. Rev. B 96, 245417 (2017).

  20. 20.

    K. Nagaev, Phys. Lett. A 169, 103 (1992).

  21. 21.

    K. Smirnov, A. Divochiy, Y. Vakhtomin, P. Morozov, P. Zolotov, A. Antipov, and V. Seleznev, Supercond. Sci. Technol. 31, 035011 (2018).

  22. 22.

    E. S. Tikhonov, M. Y. Melnikov, D. V. Shovkun, L. Sorba, G. Biasiol, and V. S. Khrapai, Phys. Rev. B 90, 161405 (2014).

  23. 23.

    S. U. Piatrusha, L. V. Ginzburg, E. S. Tikhonov, D. V. Shovkun, G. Koblmüller, A. V. Bubis, A. K. Grebenko, A. G. Nasibulin, and V. S. Khrapai, JETP Lett. 108, 71 (2018).

  24. 24.

    T. Elo, P. Lähteenmäki, D. Golubev, A. Savin, K. Arutyunov, and P. Hakonen, J. Low Temp. Phys. 189, 204 (2017).

Download references

Author information

Correspondence to V. S. Khrapai.

Additional information

We acknowledge valuable discussions with I. V. Tretyakov and A. V. Semenov.

The theoretical model was developed with a support from the Russian Foundation for Basic Research project #19-32-80037. The fabrication of the NbN sample and transport characterization were supported by the RSF project 17-72-30036. Noise measurements were performed with a support from the RSF project 19-12-00326. A. I. Kardakova and E. M. Baeva acknowledge financial support under the Grant of the President RF MK-1308.2019.2. The data analysis was performed within the state task of the Institute of Solid State Physics of the Russian Academy of Sciences.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baeva, E.M., Titova, N.A., Kardakova, A.I. et al. Universal Bottleneck for Thermal Relaxation in Disordered Metallic Films. Jetp Lett. (2020). https://doi.org/10.1134/S0021364020020034

Download citation