Advertisement

Metamorphoses of Electron Systems Hosting a Fermion Condensate

  • 2 Accesses

Abstract

We present a unified theory of strongly correlated electron systems with a fermion condensate. This theoretical framework facilitates quantitative analysis and explanation, on an equal footing, of (i) non-Fermi-liquid behavior of high-Tc superconductors in which the critical temperature for superconductivity is proportional to the Fermi energy TF and (ii) the so-called quantum electron solid state in the two-dimensional electron liquid of MOSFETs and SiGe/Si/SiGe quantum wells. In this framework, low-temperature chaotic-like behavior that is documented in experimental studies of these systems is attributed to a spontaneous topological rearrangement of the conventional Landau state, quite in contrast to models in which the chaotic element is introduced deliberately in terms of a chaotic distribution of interaction matrix elements.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1.

    J. G. Donath, F. Steglich, E. D. Bauer, J. L. Sarrao, and P. Gegenwart, Phys. Rev. Lett. 100, 136401 (2008).

  2. 2.

    N. Oeschler, P. Gegenwart, M. Lang, R. Movshovich, J. L. Sarrao, J. D. Thompson, and F. Steglich, Phys. Rev. Lett. 91, 076402 (2003).

  3. 3.

    V. A. Khodel and V.R. Shaginyan, JETP Lett. 51, 553 (1990).

  4. 4.

    V. A. Khodel, V. R. Shaginyan, and V. V. Khodel, Phys. Rep. 249(1), 86 (1994).

  5. 5.

    V. A. Khodel and M. V. Zverev, JETP Lett. 85, 404 (2007).

  6. 6.

    V. A. Khodel, J. W. Clark, and M. V. Zverev, Phys. Rev. B 78, 075120 (2008).

  7. 7.

    J. W. Clark, M. V. Zverev, and V. A. Khodel, Ann. Phys. 327, 3063 (2012).

  8. 8.

    V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W. Clark, M. V. Zverev, and V. A. Khodel, Phys. Rev. B 86, 085147 (2012).

  9. 9.

    G. E. Volovik, JETP Lett. 53, 222 (1991).

  10. 10.

    P. Nozières, J. Phys. I France 2, 443 (1992).

  11. 11.

    G. E. Volovik, Springer Lecture Notes in Physics 718, 31 (2007).

  12. 12.

    G. E. Volovik, JETP Lett. 59, 830 (1994).

  13. 13.

    M. V. Zverev, V. A. Khodel, and M. Baldo, JETP Lett. 72, 126 (2000).

  14. 14.

    T. T. Heikkilä, N. B. Kopnin, and G. E. Volovik, JETP Lett. 94, 233 (2011).

  15. 15.

    V. R. Shaginyan, K. G. Popov, and A. Mzezane, Phys. Rev. B 84, 060401(R) (2011).

  16. 16.

    M. Ya. Amusia, K. G. Popov, V. R. Shaginyan, and V. A. Stephanovich, Theory of heavy-fermion compounds, Springer, Berlin, Germany (2014).

  17. 17.

    V. A. Khodel, J. W. Clark, and M. V. Zverev, Phys. Lett. A 382, 3281 (2018).

  18. 18.

    G. E. Volovik, JETP Lett. 107, (516) (2018).

  19. 19.

    V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, V. A. Stephanovich, G. S. Japaridze, and S. A. Artamonov, JETP Lett. 110, 290 (2019).

  20. 20.

    V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson, Phys. Rev. Lett. 89, 076401 (2002).

  21. 21.

    D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A. I. Lichtenstein, and M. I. Katsnelson, Phys. Rev. Lett. 112, 070403 (2014).

  22. 22.

    V. A. Khodel, J. Low Temp. Phys. 191, 14 (2018).

  23. 23.

    P. Brussarski, S. Li, S. V. Kravchenko, A. A. Shashkin, and M. P. Sarachik, Nat. Commun. 9, 3803 (2018).

  24. 24.

    M. Yu. Mel’nikov, A. A. Shashkin, V. T. Dolgopolov, Amy Y. X. Zhu, S. V. Kravchenko, S.-H. Huang, and C. W. Liu, Phys. Rev. B 99, 081106(R) (2019).

  25. 25.

    A. A. Shashkin and S. V. Kravchenko, Appl. Sci. 9, 1169 (2019).

  26. 26.

    A. A. Patel and S. Sachdev, Phys. Rev. Lett. 123, 066601 (2019).

  27. 27.

    G. E. Volovik, JETP Lett. 110, 352 (2019).

  28. 28.

    Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 80 (2018).

  29. 29.

    M. Yankovitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Science 363, 1059 (2019).

  30. 30.

    Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies-Bigord, K. Watanabe, T. Taniguchi, T. Tenthil, and P. Jarillo-Herrero, arXiv:1901.03710.

  31. 31.

    S. L. Tomarken, Y. Cao, A. Demir, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and R. C. Ashoori, Phys. Rev. Lett. 123, 046601 (2019).

  32. 32.

    V. Y. Irkhin and Y. N. Skryabin, JETP Lett. 107, 651 (2018).

  33. 33.

    T. J. Peltonen, R. Ojärvi, and T. T. Heikkilä, Phys. Rev. B 98, 220504(R) (2018).

  34. 34.

    S. Link, S. Forti, A. Stöohr, K. Kuüster, M. Röosner, D. Hirschmeier, C. Chen, J. Avila, M. C. Asensio, A. A. Zakharov, T. O. Wehling, A. I. Lichtenstein, M. I. Katsnelson, and U. Starke, Phys. Rev. B 100 121407(R) (2019).

  35. 35.

    P. Esquinazi, JETP Lett. 100, 336 (2014).

  36. 36.

    G. E. Volovik, JETP Lett. 107, 516 (2018).

  37. 37.

    Y. Kopelevich, V. V. Lemanov, S. Moehlecke, and J. H. S. Torres, Phys. Solid State 41, 2135 (1999).

  38. 38.

    T. Scheike, P. Esquinazi, A. Setzer, and W. Böohlmann, Carbon 59, 140 (2013).

  39. 39.

    I. M. Lifshitz, Sov. Phys. JETP 11, 1130 (1960).

  40. 40.

    L. D. Landau, Sov. Phys. JETP 3, 920 (1957).

  41. 41.

    L. P. Pitaevskii, Sov. Phys. JETP 10, 1267 (1960).

  42. 42.

    P. Nozières, J. Phys. I France 2, 454 (1992).

  43. 43.

    T. N. Zavaritskaya and E. I. Zavaritskaya, JETP Lett. 45, 609 (1987).

  44. 44.

    S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, V. M. Pudalov, and M. D’Iorio, Phys. Rev. B 50, 8039 (1994).

  45. 45.

    E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev. Mod. Phys. 73, 251 (2001).

  46. 46.

    A. A. Shashkin, Phys. Usp. 48, 129 (2005).

  47. 47.

    A. Mokashi, S. Li, B. Wen, S. V. Kravchenko, A. A. Shashkin, V. T. Dolgopolov, and M. P. Sarachik, Phys. Rev. Lett. 109, 096405 (2012).

  48. 48.

    A. Punnoose, A. M. Finkel’stein, Phys. Rev. Lett. 88, 016802 (2002).

  49. 49.

    A. Punnoose and A. M. Finkel’stein, Science 310, 289 (2005).

  50. 50.

    A. Kaminski, T. Kondo, T. Takeuchi, and G. Gu, Philos. Mag. 95, 453 (2015).

  51. 51.

    V. A. Khodel, J. W. Clark, and M. V. Zverev, JETP Lett. 108, 260 (2018).

  52. 52.

    T. Uemura, J. Phys. Condens. Matter 16, S4515 (2004).

  53. 53.

    R. A. Cooper, Y. Wang, B. Vignolle, O. J. Lipscombe, S. M. Hayden, Y. Tanabe, T. Adachi, Y. Koike, M. Nohara, H. Takagi, C. Proust, and N. E. Hussey, Science 323, 603 (2009).

Download references

Author information

Correspondence to V. A. Khodel.

Additional information

In conclusion, we are deeply grateful to P. Esquinazi, P. Gegenwart, M. Katsnelson, Ya. Kopelevich, S. Kravchenko, F. Steglich, V. Shaginyan, and G. Volovik for fruitful discussions. V. A. Khodel and J. W. Clark acknowledge financial support from the McDonnell Center for the Space Sciences.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khodel, V.A., Clark, J.W. & Zverev, M.V. Metamorphoses of Electron Systems Hosting a Fermion Condensate. Jetp Lett. (2020) doi:10.1134/S0021364020020010

Download citation