Destructive Quantum Interference and Exceptional Points in High-frequency Response of Two-state System

  • A. A. GorbatsevichEmail author
  • N. M. Shubin


We consider the high-frequency conductance of a two-state quantum system within non-equilibrium Green function formalism. Multiply connected configurations possessing Fano-Feshbach antiresonances in stationary transmission show trivial behavior in the dynamical regime. Whereas the simply connected linear configuration, demonstrates an exceptional point in dynamics and destructive quantum interference for frequency equal the energy split between the eigenstates. This is manifestation of “synthetic dimension” introduced by the Floquet quasienergy spectrum.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


N. M. Shubin acknowledges Russian Foundation for Basic Research (project # 18-32-00453) and A. A. Gorbatsevich acknowledges the Presidium of the Russian Academy of Sciences (Program of Fundamental Research) for support.


  1. 1.
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    A. E. Miroshnichenko, S. Flach, and Yu. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    S. Chen, G. Chen, and M. A. Ratner, J. Phys. Chem. Lett. 9, 2843 (2018).CrossRefGoogle Scholar
  5. 5.
    C. Salhani, M. L. Della Rocca, C. Bessis, R. Bonnet, C. Barraud, P. Lafarge, A. Chevillot, P. Martin, and J.-C. Lacroix, Phys. Rev. B 95, 165431 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    K. Yoshizawa, T. Tada, and A. Staykov, J. Am. Chem. Soc. 130, 9406 (2008).CrossRefGoogle Scholar
  7. 7.
    Y. Tsuji, E. Estrada, R. Movassagh, and R. Hoffmann, Chem. Rev. 118, 4887 (2018).CrossRefGoogle Scholar
  8. 8.
    S. Longhi, Phys. Rev. A 91, 063809 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    S.A. Reyes, D. Thuberg, D. Perez, C. Dauer, and S. Eggert, New J. Phys. 19, 043029 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    D. Thuberg, S.A. Reyes, and S. Eggert, Phys. Rev. B 93, 180301 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    L. Ruocco and A. Gómez-León, Phys. Rev. B 95, 064302 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    M. Bello, C. E. Creffield, and G. Platero, Sci. Rep. 6, 22562 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    J.K. Asboth and H. Obuse, Phys. Rev. B 88, 121406 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    E. Lustig, S. Weimann, Y. Plotnik, Ya. Lumer, M. A. Bandres, A. Szameit, and M. Segev, Nature 567, 356 (2019).ADSCrossRefGoogle Scholar
  15. 15.
    L. Yuan, Q. Lin, M. Xiao, and S. Fan, Optica 5 (11), 1396 (2018).ADSCrossRefGoogle Scholar
  16. 16.
    Q. Lin, M. Xiao, L. Yuan, and S. Fan, Nat. Commun. 7, 13731 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    T. Ozawa, H. M. Price, N. Goldman, O. Zilberberg, and I. Carusotto, Phys. Rev. A 93, 043827 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    H. M. Price, T. Ozawa, and N. Goldman, Phys Rev. A 95, 023607 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    J. Wu, B. Wang, J. Wang, and H. Guo, Phys. Rev. B 72, 195324 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    P. I. Arseev, Phys. Usp. 58, 1159 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, J. Phys. C: Solid State Phys. 4, 916 (1971).ADSCrossRefGoogle Scholar
  22. 22.
    A.-P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50, 5528 (1994).ADSCrossRefGoogle Scholar
  23. 23.
    Y. V. Kopaev and S. N. Molotkov, JETP Lett. 59, 800 (1994).ADSGoogle Scholar
  24. 24.
    M. P. Anantram and S. Datta, Phys. Rev. B 51, 7632 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    B. Wang, J. Wang, and H. Guo, Phys. Rev. Lett. 82, 398 (1999).ADSCrossRefGoogle Scholar
  26. 26.
    L. Y. Chen and C. S. Ting, Phys. Rev. Lett. 64, 3159 (1990).ADSCrossRefGoogle Scholar
  27. 27.
    A. A. Gorbatsevich, M. N. Zhuravlev, and V. V. Kapaev, JETP 107, 288 (2008).ADSCrossRefGoogle Scholar
  28. 28.
    A. A. Gorbatsevich and N. M. Shubin, JETP Lett. 103 (12), 769 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    A. A. Gorbatsevich and N. M. Shubin, Phys. Rev. B 96, 205441 (2017).ADSCrossRefGoogle Scholar
  30. 30.
    N. Moiseyev, Non-Hermitian Quantum Mechanics, Cambridge University Press, Cambridge (2011).CrossRefGoogle Scholar
  31. 31.
    T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, Heidelberg (1995).CrossRefGoogle Scholar
  32. 32.
    C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).ADSCrossRefGoogle Scholar
  33. 33.
    A. A. Gorbatsevich, G. Ya. Krasnikov, and N. M. Shubin, Sci. Rep. 8, 15780 (2018).ADSCrossRefGoogle Scholar
  34. 34.
    E. I. Golant and A. B. Pashkovskiy, JETP Lett. 67, 394 (1998).ADSCrossRefGoogle Scholar
  35. 35.
    A. B. Pashkovskiy, JETP Lett. 82, 210 (2005).ADSCrossRefGoogle Scholar
  36. 36.
    V. V. Kapaev, JETP 121, 303 (2015).ADSCrossRefGoogle Scholar
  37. 37.
    Y. Xue and M. A. Ratner, Phys. Rev. B 68, 115406 (2003).ADSCrossRefGoogle Scholar
  38. 38.
    F. Chen, J. Hihath, Z. Huang, X. Li, and N. J. Tao, Ann. Rev. Phys. Chem. 58, 535 (2007).ADSCrossRefGoogle Scholar
  39. 39.
    K. G. L. Pedersen, M. Strange, M. Leijnse, P. Hedegard, G. C. Solomon, and J. Paaske, Phys. Rev. B 90, 125413 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.P. N. Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia
  2. 2.National Research University of Electronic TechnologyZelenograd, MoscowRussia

Personalised recommendations