JETP Letters

, Volume 110, Issue 5, pp 319–322 | Cite as

Nonreciprocal Propagation of Solitons in a Chiral Medium

  • A. A. ZabolotskiiEmail author
Optics and Laser Physics


The evolution of polarization of a light pulse in a system consisting of two-level atoms located on symmetric helices twisted into a bundle has been considered. The interaction of induced dipoles is taken into account by additional third order differential terms in Maxwell’s equations in the nearest neighbor approximation. An integrable generalization of the reduced Maxwell-Bloch equations has been derived under the conditions of almost unidirectional propagation. The analysis of the solutions obtained has shown that the evolution of field pulses critically depends on the direction of their propagation or on the chirality of the medium.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Russian Foundation for Basic Research (project no. 18-02-00379) and by the Ministry of Science and Higher Education of the Russian Federation (project no. AAAA-A17-117060810014-9).

Supplementary material

11448_2019_2187_MOESM1_ESM.pdf (54 kb)
Non-reciprocal propagation of solitons in a chiral medium


  1. 1.
    V. N. Konotop, J. Yang, and D. A. Zezyulin, Rev. Mod. Phys. 88, 035002 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, J. Appl. Phys. 76, 2023 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, Appl. Phys. Lett. 66, 2324 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, Appl. Phys. Lett. 79, 314 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, Phys. Rev. E 71, 037602 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    F. Biancalana, J. Appl. Phys. 104, 093113 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    V. Grigoriev and F. Biancalana, Opt. Lett. 36, 2131 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method (Springer, Berlin, 1984).zbMATHGoogle Scholar
  9. 9.
    A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer Academic, Dordrecht, 1999).CrossRefGoogle Scholar
  10. 10.
    A. A. Zabolotskii, Eur. Phys. J. Spec. Top. 173, 193 (2009).CrossRefGoogle Scholar
  11. 11.
    S. Sternberg, Curvature in Mathematics and Physics (Dover, Mineola, New York, 2012).zbMATHGoogle Scholar
  12. 12.
    A. A. Zabolotskii, J. Exp. Theor. Phys. 127, 448 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    J. K. Eilbeck, J. Phys. A: Math. Gen. 5, 1355 (1972).ADSCrossRefGoogle Scholar
  14. 14.
    J. M. Hyman, D. W. McLaughlin, and A. C. Scott, Phys. D (Amsterdam, Neth.) 3, 23 (1981).ADSCrossRefGoogle Scholar
  15. 15.
    Yu. B. Gaididei, K. O. Rasmussen, and P. L. Christiansen, Phys. Rev. E 52, 2951 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    L. Allen and J. H. Eberly, Optical Resonances and Two Level Atoms (Wiley, New York, 1975).Google Scholar
  17. 17.
    H. Steudel and R. Meinel, Phys. D (Amsterdam, Neth.) 87, 127 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    M. C. Benedict, V. A. Malyshev, E. D. Trifonov, and A. I. Zaitsev, Phys. Rev. A 43, 3845 (1991).ADSCrossRefGoogle Scholar
  19. 19.
    C. M. Bowden and J. P. Dowling, Phys. Rev. A 47, 1247 (1993).ADSCrossRefGoogle Scholar
  20. 20.
    A. P. Pyatakov and A. K. Zvezdin, Phys. Usp. 55, 557 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations