Advertisement

JETP Letters

, Volume 110, Issue 5, pp 323–328 | Cite as

Experimental Test of the Principle of Microscopic Reversibility in Photoluminescence Decay Kinetics

  • V. F. RazumovEmail author
  • S. A. Tovstun
  • V. A. Kuz’min
Optics and Laser Physics
  • 4 Downloads

Abstract

The similarity of photoluminescence decay kinetic curves at the inversion of the wavelengths of excitation and detection of photoluminescence has been experimentally demonstrated. In this case, if the direct process is Stokes photoluminescence, the reverse process inevitably falls in the anti-Stokes region of the spectrum. The experiments have been performed with colloidal solutions of InP/ZnS quantum dot nanoclusters that do not satisfy the Vavilov law of the independence of luminescent characteristics of a luminophore of the pump light wavelength.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Precision measurements of kinetic curves of luminescence decay at the inversion of excitation and detection wavelengths were performed on the equipment of the Shared Usage Center New Materials and Technologies, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences.

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation (project no. 0089-2019-0003, state record no. AAAA-A19-119070790003-7 and project no. 074-02-2018-286).

Supplementary material

11448_2019_2188_MOESM1_ESM.pdf (462 kb)
Experimental Test of the Principle of Microscopic Reversibility in Photoluminescence Decay Kinetics

References

  1. 1.
    S. A. Tovstun, V. F. Razumov, M. G. Spirin, E. G. Martyanova, and S. B. Brichkin, J. Lumin. 190, 436 (2017).CrossRefGoogle Scholar
  2. 2.
    E. H. Kennard, Phys. Rev. 11, 29 (1918).ADSCrossRefGoogle Scholar
  3. 3.
    E. H. Kennard, Phys. Rev. 28, 672 (1926).ADSCrossRefGoogle Scholar
  4. 4.
    V. F. Razumov, Photonics of Colloidal Quantum Dots (Ivanov. Gos. Univ., Ivanovo, 2017) [in Russian].Google Scholar
  5. 5.
    B. I. Stepanov, Sov. Phys. Dokl. 2, 81 (1957).ADSGoogle Scholar
  6. 6.
    M. G. Spirin, V. V. Trepalin, S. B. Brichkin, and V. F. Razumov, High Energy Chem. 52, 81 (2018).CrossRefGoogle Scholar
  7. 7.
    S. A. Tovstun and V. F. Razumov, High Energy Chem. 50, 281 (2016).CrossRefGoogle Scholar
  8. 8.
    O. I. Mićić, S. P. Ahrenkiel, and A. J. Nozik, Appl. Phys. Lett. 78, 4022 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    S. B. Brichkin, M. G. Spirin, S. A. Tovstun, V. Yu. Gak, E. G. Mart’yanova, and V. F. Razumov, High Energy Chem. 50, 395 (2016).CrossRefGoogle Scholar
  10. 10.
    S. A. Tovstun and V. F. Razumov, High Energy Chem. 49, 352 (2015).CrossRefGoogle Scholar
  11. 11.
    S. A. Tovstun, S. B. Brichkin, M. G. Spirin, V. Yu. Gak, and V. F. Razumov, High Energy Chem. 51, 449 (2017).CrossRefGoogle Scholar
  12. 12.
    S. A. Tovstun, High Energy Chem. 50, 327 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • V. F. Razumov
    • 1
    • 2
    • 3
    Email author
  • S. A. Tovstun
    • 1
    • 2
  • V. A. Kuz’min
    • 4
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Moscow Institute of Physics and Technology (National Research University)Dolgoprudnyi, Moscow regionRussia
  3. 3.Moscow State UniversityMoscowRussia
  4. 4.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations