Advertisement

JETP Letters

, Volume 110, Issue 5, pp 359–363 | Cite as

Simulation of the Glass Transition of a Thin Aluminum Melt Layer at Ultrafast Cooling under Isobaric Conditions

  • E. M. KirovaEmail author
  • G. E. Norman
  • V. V. Pisarev
Condensed Matter
  • 6 Downloads

Abstract

It is shown that a sharp increase in viscosity, a change in the decay rate of correlations, and the appearance of nonequilibrium and transverse sound in a thin film of aluminum melt during rapid cooling occur in the same temperature range. The analysis is performed using the shear stress autocorrelation functions calculated by the molecular dynamics method. The cooling rate dependences indicate the transition of the metastable state into the amorphous one rather than a phase transition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We are grateful to the Supercomputer Centers of the Joint Institute for High Temperatures, Russian Academy of Sciences and the Joint Supercomputer Center, Russian Academy of Sciences for the computational time.

Funding

This work was supported by the Russian Science Foundation (project no. 18-19-00734) (G.E. Norman, theoretical analysis of the temperature dependence of the attenuation decrement) and by the Council of the President of the Russian Federation for Support of Leading Scientific Schools (project no. 5922.2018.8) (V.V. Pisarev, E.M. Ki-rova, obtaining autocorrelation functions, calculating the viscosity coefficient, theoretical analysis of the dependences of dispersion and attenuation decrement).

References

  1. 1.
    N. V. Priezjev and M. A. Makeev, J. Non-Cryst. Solids 495, 95 (2018).CrossRefGoogle Scholar
  2. 2.
    Y. Waseda and H. S. Chen, Phys. Status Solidi A 49, 387 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Qi, T. Cagin, Y. Kimura, and W. A. Goddard, Phys. Rev. B 59, 3527 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    A. Takeuchi and A. Inoue, Mater. Sci. Eng. 304, 446 (2001).CrossRefGoogle Scholar
  5. 5.
    L. N. Kolotova, G. E. Norman, and V. V. Pisarev, J. Non-Cryst. Solids 429, 98 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    A. I. Fedorchenko, J. Cryst. Growth 475, 362 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    V. A. Polukhin and N. A. Vatolin, Rasplavy 2, 194 (2018).Google Scholar
  8. 8.
    V. A. Polukhin and N. A. Vatolin, Russ. Chem. Rev. 84, 498 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    J. W. P. Schmelzer and T. V. Tropin, J. Non-Cryst. Solids 407, 170 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    J. W. P. Schmelzer, J. Chem. Phys. 074512, 136 (2012).Google Scholar
  11. 11.
    T. V. Tropin, J. W. P. Schmelzer, and C. Schick, J. Non-Cryst. Solids 357, 129 (2011).Google Scholar
  12. 12.
    M. G. Vasin, S. G. Menshikova, and M. D. Ivshin, Phys. A (Amsterdam, Neth.) 449, 64 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    R. E. Ryltsev, B. A. Klumov, N. M. Chtchelkatchev, and K. Y. Shunyaev, J. Chem. Phys. 149, 164502 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    D. S. Sanditov and M. I. Ojovan, Phys. Usp. 62, 111 (2019).ADSCrossRefGoogle Scholar
  15. 15.
    H. Jónsson and H. C. Andersen, Phys. Rev. Lett. 60, 2295 (1988).ADSCrossRefGoogle Scholar
  16. 16.
    C. A. Angell, Science (Washington, DC, U. S.) 267, 1924 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    Y. D. Fomin, V. V. Brazhkin, and V. N. Ryzhov, Phys. Rev. E 86, 011503 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    Y. D. Fomin, V. N. Ryzhov, and V. V. Brazhkin, J. Phys.: Condens. Matter. 25, 285104 (2013).Google Scholar
  19. 19.
    R. E. Ryltsev, N. M. Chtchelkatchev, and V. N. Ryzhov, Phys. Rev. Lett. 110, 025701 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    P. Badrinarayanan, W. Zheng, Q. Li, and S. L. Simon, J. Non-Cryst. Solids 353, 2603 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    V. Wessels, A. K. Gangopadhyay, and K. K. Sahu, Phys. Rev. B 83, 94116 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    M. D. Halls, D. Yoshidome, and T. J. Mustard, J. Imaging Soc. Jpn. 54, 561 (2015).Google Scholar
  23. 23.
    P. N. Patrone, A. Deinstfrey, A. R. Browning, S. Tucker, and S. Christensen, Polymer 87, 246 (2016).CrossRefGoogle Scholar
  24. 24.
    C. Balbuena, C. Brito, and D. A. Stariolo, J. Phys.: Condens. Matter 26, 155104 (2014).Google Scholar
  25. 25.
    M. S. Daw and M. Baskes, Phys. Rev. B 29, 6443 (1984).ADSCrossRefGoogle Scholar
  26. 26.
    X. Liu, W. Xu, S. M. Foiles, and J. B. Adams, Appl. Phys. Lett. 72, 1578 (1998).ADSCrossRefGoogle Scholar
  27. 27.
    L. Zhong, J. Wang, H. Sheng, and S. Mao, Nature (London, U.K.) 512, 177 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    A. P. Baikov, V. A. Ivanchenko, V. I. Motorin, S. L. Musher, and A. F. Shestak, Phys. Lett. A 113, S 38 (1985).ADSCrossRefGoogle Scholar
  29. 29.
    D. V. Minakov and P. R. Levashov, Phys. Rev. B 92, 224102 (2015).ADSCrossRefGoogle Scholar
  30. 30.
    G. E. Norman and V. V. Stegailov, Math. Models Comput. Simul. 5, 305 (2013).MathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Y. Kuksin, I. V. Morozov, G. E. Norman, V. V. Stegailov, and I. V. Valuev, Mol. Simul. 31, 1005 (2005).CrossRefGoogle Scholar
  32. 32.
    V. V. Pisarev, Russ. J. Phys. Chem. A 88, 1382 (2014).CrossRefGoogle Scholar
  33. 33.
    V. I. Ladyanov, A. L. Beltyukov, S. G. Menshikova, and A. U. Korepanov, Phys. Chem. Liq. 52, 46 (2014).CrossRefGoogle Scholar
  34. 34.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1982; Pergamon, New York, 1988).Google Scholar
  35. 35.
    K. Trachenko and V. V. Brazhkin, J. Phys.: Condens. Matter 21, 425104 (2009).ADSGoogle Scholar
  36. 36.
    M. V. Vol’kenshtein and O. B. Ptitsyn, Zh. Tekh. Fiz. 26, 2204 (1956).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • E. M. Kirova
    • 1
    • 2
    • 3
    Email author
  • G. E. Norman
    • 1
    • 2
  • V. V. Pisarev
    • 1
    • 2
    • 3
  1. 1.Moscow Institute of Physics and Technology (National Research University)Dolgoprudnyi, Moscow regionRussia
  2. 2.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  3. 3.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations