Advertisement

JETP Letters

, Volume 109, Issue 11, pp 736–743 | Cite as

Stability of the Coexistence Phase of Chiral Superconductivity and Noncollinear Spin Ordering with a Nontrivial Topology and Strong Electron Correlations

  • V. V. Val’kov
  • A. O. ZlotnikovEmail author
Condensed Matter

Abstract

It has been shown that quantum charge and spin fluctuations in a strongly correlated 2D system with a triangular lattice, significantly renormalizing the magnetic order parameter, do not destroy the coexistence phase of chiral d + id superconductivity and 120° spin ordering. The region of realization of nontrivial topology determined by the topological index Ñ3 holds. It has been shown that edge states for the topologically non-trivial phase include a Majorana mode. The spatial structure of this mode has been determined. It has been found that spin and charge fluctuations shift the critical electron densities at which quantum topological transitions occur. It has been shown that an increase in the intersite Coulomb repulsion reduces the number of such transitions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11448_2019_2128_MOESM1_ESM.pdf (94 kb)
Supplementary material, approximately 228 KB.

References

  1. 1.
    N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    A. Yu. Kitaev, Phys. Usp. 44, S131 (2001).CrossRefGoogle Scholar
  3. 3.
    L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    M. Snelder, A. A. Golubov, Y. Asano, and A. Brinkman, J. Phys.: Condens. Matter 27, 315701 (2015).ADSGoogle Scholar
  5. 5.
    J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    M. Sato and S. Fujimoto, Phys. Rev. Lett. 105, 217001 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    V. V. Val’kov, V. A. Mitskan, and M. S. Shustin, JETP Lett. 106, 798 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    A. A. Kopasov, I. M. Khaymovich, and A. S. Mel’nikov, Beilstein J. Nanotechnol. 9, 1184 (2018).CrossRefGoogle Scholar
  10. 10.
    H. Zhang, Ch.-X Liu, S. Gazibegovic, et al., Nature (London, U.K.) 556, 74 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    I. Martin and A. F. Morpurgo, Phys. Rev. B 85, 144505 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    Y.-M. Lu and Z. Wang, Phys. Rev. Lett. 110, 096403 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B 78, 195125 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    P. Ghosh, J. D. Sau, S. Tewari, and S. Das Sarma, Phys. Rev. B 82, 184525 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    G. E. Volovik, The Universe in a Helium Droplet (Oxford Press, New York, 2003).zbMATHGoogle Scholar
  16. 16.
    V. V. Val’kov and A. O. Zlotnikov, JETP Lett. 104, 483 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    V. V. Val’kov, A. O. Zlotnikov, and M. S. Shustin, J. Magn. Magn. Mater. 459, 112 (2018).ADSCrossRefGoogle Scholar
  18. 18.
    L. Fidkowski and A. Yu. Kitaev, Phys. Rev. B 81, 134509 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    T. Morimoto, A. Furusaki, and Ch. Mudry, Phys. Rev. B 92, 125104 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    K. Ishikawa and T. Matsuyama, Nucl. Phys. B 280, 523 (1987).ADSCrossRefGoogle Scholar
  21. 21.
    G. E. Volovik and V. M. Yakovenko, J. Phys.: Condens. Matter 1, 5263 (1989).ADSGoogle Scholar
  22. 22.
    G. E. Volovik, JETP Lett. 90, 398 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    Z. Wang and S.-C. Zhang, Phys. Rev. B 86, 165116 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    G. Baskaran, Phys. Rev. Lett. 91, 097003 (2003).ADSCrossRefGoogle Scholar
  25. 25.
    V. V. Val’kov, T. A. Val’kova, and V. A. Mitskan, J. Magn. Magn. Mater. 440, 129 (2017).ADSCrossRefGoogle Scholar
  26. 26.
    V. V. Val’kov and A. O. Zlotnikov, Phys. Solid State 59, 2120 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    A. V. Chubukov, S. Sachdev, and T. Senthil, J. Phys.: Condens. Matter 6, 8891 (1994).ADSGoogle Scholar
  28. 28.
    D. M. Dzebisashvili and A. A. Khudaiberdyev, JETP Lett. 108, 189 (2018).ADSCrossRefGoogle Scholar
  29. 29.
    L. Capriotti, A. E. Trumper, and S. Sorella, Phys. Rev. Lett. 82, 3899 (1999).ADSCrossRefGoogle Scholar
  30. 30.
    S. R. White and A. L. Chernyshev, Phys. Rev. Lett. 99, 127004 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    A. F. Barabanov and A. V. Mikheyenkov, JETP Lett. 56, 454 (1992).ADSMathSciNetGoogle Scholar
  32. 32.
    K. Pasrija and S. Kumar, Phys. Rev. B 93, 195110 (2016).ADSCrossRefGoogle Scholar
  33. 33.
    K. Jiang, S. Zhou, and Z. Wang, Phys. Rev. B 90, 165135 (2014).ADSCrossRefGoogle Scholar
  34. 34.
    C. Weber, A. Lauchli, F. Mila, and T. Giamarchi, Phys. Rev. B 73, 014519 (2006).ADSCrossRefGoogle Scholar
  35. 35.
    R. O. Zaitsev, Sov. Phys. JETP 41, 100 (1975).ADSGoogle Scholar
  36. 36.
    R. O. Zaitsev, Sov. Phys. JETP 43, 574 (1976).ADSGoogle Scholar
  37. 37.
    V. V. Val’kov and S. G. Ovchinnikov, Hubbard Operators in the Theory of Strongly Correlated Electrons (Imperial College Press, London, 2004).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Kirensky Institute of Physics, Federal Research Center KSC, Siberian BranchRussian Academy of SciencesAkademgorodok, KrasnoyarskRussia

Personalised recommendations