Advertisement

JETP Letters

, Volume 109, Issue 11, pp 729–735 | Cite as

Dynamics of Domain Walls in a Fulde–Ferrell Superconductor

  • V. D. PlastovetsEmail author
  • D. Yu. Vodolazov
Condensed Matter
  • 2 Downloads

Abstract

The mechanism of switching between different states of a quasi-one-dimensional current-carrying superconductor in the Fulde–Ferrell phase has been theoretically studied. It has been shown within the time-dependent Ginzburg–Landau model that switching at a current above a critical value occurs due to the appearance of finite domains with a nonzero electric field at the interface with a normal metal or in a “weak” place inside the superconductor and their motion along the superconductor. It has been found that each such soliton of the electric field corresponds to a moving domain wall that separates the parts of the superconductor with opposite directions of supervelocities and near which the absolute value of the superconducting order parameter is finite. The last property distinguishes such solitons from other well-known solitons in current-carrying superconductors, namely, moving Abrikosov or Josephson vortices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1965).Google Scholar
  2. 2.
    P. Fulde and R. A. Ferrell, Phys. Rev. A 135, 550 (1964).ADSCrossRefGoogle Scholar
  3. 3.
    H. Mayaffre, S. Kramer, M. Horvatić, C. Berthier, K. Miyagawa, K. Kanoda, and V. F. Mitrovic, Nat. Phys. 10, 928 (2014).CrossRefGoogle Scholar
  4. 4.
    C. C. Agosta, J. Jin, W. A. Coniglio, B. E. Smith, K. Cho, I. Stroe, C. Martin, S. W. Tozer, T. P. Murphy, E. C. Palm, J. A. Schlueter, and M. Kurmoo, Phys. Rev. B 85, 214514 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    R. Beyer, B. Bergk, S. Yasin, J. A. Schlueter, and J. Wosnitza, Phys. Rev. Lett. 109, 027003 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    A. I. Buzdin, Rev. Mod. Phys. 77, 936 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    A. S. Sidorenko, V. I. Zdravkov, J. Kehrle, R. Morari, G. Obermeier, S. Gsell, M. Schreck, C. Muller, M. Yu. Kupriyanov, V. V. Ryazanov, S. Horn, L. R. Tagirov, and R. Tidecks, JETP Lett. 90, 139 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    S. Mironov, A. Melnikov, and A. Buzdin, Phys. Rev. Lett. 109, 237002 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    K. V. Samokhin and B. P. Truong, Phys. Rev. B 96, 214501 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    P. M. Marychev and D. Yu. Vodolazov, Phys. Rev. B 98, 214510 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    S. V. Mironov, D. Vodolazov, Yu. Yerin, A. V. Samokhvalov, A. S. Mel’nikov, and A. Buzdin, Phys. Rev. Lett. 121, 077002 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    N. B. Kopnin, Theory of Nonequilibrium Superconductivity (Clarendon, Oxford, 1997).Google Scholar
  13. 13.
    K. V. Samokhin and B. P. Truong, Phys. Rev. B 99, 014503 (2019).ADSCrossRefGoogle Scholar
  14. 14.
    B. I. Ivlev and N. B. Kopnin, Sov. Phys. Usp. 25, 772 (1982).ADSCrossRefGoogle Scholar
  15. 15.
    M. Tinkham, Introduction to Superconductivity (Mc-Graw-Hill, New York, 1996).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.Institute for Physics of MicrostructuresRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations