Advertisement

JETP Letters

, Volume 109, Issue 11, pp 710–714 | Cite as

Disordering in Stone—Wales Graphene at High Temperatures

  • L. A. Openov
  • A. I. PodlivaevEmail author
Condensed Matter
  • 4 Downloads

Abstract

Thermally activated structural disordering is numerically studied in Stone—Wales graphene, which is a recently predicted new allotropic modification of graphene. The elastic characteristics of this material are analyzed. The Young modulus (E= 857 GPa) and Poisson ratio (ν = 0.39) are determined. Defect formation processes under strong heating are studied by the real-time molecular dynamics method. It is demonstrated that melting begins with the formation of large windows in the monolayer and splitting of transversely oriented carbon chains from it. A criterion for the melting of two-dimensional systems is used to analyze the results. The upper estimate for the melting temperature is about 3800 K, which is much lower than the corresponding value for graphene.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington, DC, U. S.) 306, 666 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    A. E. Galashev and O. R. Rakhmanova, Phys. Usp. 57, 970 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London, U.K.) 438, 197 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    X.-L. Sheng, H.-J. Cui, F. Ye, Q.-B. Yan, Q.-R. Zheng, and G. Su, J. Appl. Phys. 112, 074315 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Liu, G. Wang, Q. Huang, L. Guo, and X. Chen, Phys. Rev. Lett. 108, 225505 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    Z. Wang, X.-F. Zhou, X. Zhang, Q. Zhu, H. Dong, M. Zhao, and A. R. Oganov, Nano Lett. 15, 6182 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Proc. Natl. Acad. Sci. U.S.A. 112, 2372 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    L. A. Chernozatonskii, P. B. Sorokin, A. G. Kvashnin, and D. G. Kvashnin, JELP Lett. 95, 454 (2012).Google Scholar
  10. 10.
    J. Zhou, Q. Wang, Q. Sun, X. C. Chen, Y. Kawazoe, and P. Jena, Nano Lett. 9, 3867 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    H. Einollahzadeh, S. M. Fazeli, and R. S. Dariani, Sci. Lechnol. Adv. Mater. 17, 610 (2017).CrossRefGoogle Scholar
  12. 12.
    G. E. Volovik, JELP Lett. 107, 516 (2018).ADSGoogle Scholar
  13. 13.
    D. C. Elias, R. R. Nair, L. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science (Washington, DC, U. S.) 323, 610 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Li, L. Xu, H. Liu, and Y. Li, Chem. Soc. Rev. 43, 2572 (2014).CrossRefGoogle Scholar
  15. 15.
    Y. Gao, T. Cao, F. Cellini, C. Berger, W. A. de Heer, E. Tosatti, E. Riedo, and A. Bongiorno, Nat. Nano-technol. 13, 133 (2018).ADSCrossRefGoogle Scholar
  16. 16.
    P. V. Bakharev, M. Huang, M. Saxena, S. W. Lee, S. H. Joo, S. O. Park, J. Dong, D. Camacho-Mojica, S. Ji, Y. Kwon, M. Biswal, F. Ding, S. K. Kwak, Z. Lee, and R. S. Ruoff, arxiv: 1901/1901.02131.Google Scholar
  17. 17.
    H. Yin, X. Shi, C. He, M. Martinez-Canales, J. Li, C. J. Pickard, C. Tang, T. Ouyang, C. Zhang, and J. Zhong, Phys. Rev. B 99, 041405 (2019).ADSCrossRefGoogle Scholar
  18. 18.
    A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).ADSCrossRefGoogle Scholar
  19. 19.
    F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano 5, 26 (2011).CrossRefGoogle Scholar
  20. 20.
    X. Peng and R. Ahuja, Nano Lett. 8, 4464 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    M. M. Maslov, A. I. Podlivaev, and K. P. Katin, Mol. Simul. 42, 305 (2016).CrossRefGoogle Scholar
  22. 22.
    A. I. Podlivaev and L. A. Openov, JETP Lett. 103, 185 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    L. A. Openov and A. I. Podlivaev, JETP Lett. 107, 713 (2018).ADSCrossRefGoogle Scholar
  24. 24.
    C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science (Washington, DC, U. S.) 321, 385 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    O. L. Blakslee, J. Appl. Phys. 41, 3373 (1970).ADSCrossRefGoogle Scholar
  26. 26.
    K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys.: Condens. Matter 23, 202202 (2011).ADSGoogle Scholar
  27. 27.
    J. Ziman, Principles of the Theory of Solids (Cambridge Univ., Cambridge, 1976).zbMATHGoogle Scholar
  28. 28.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).Google Scholar
  29. 29.
    V. M. Bedanov, G. V. Gadiyak, and Yu. E. Lozovik, Phys. Lett. A 109, 289 (1985).ADSCrossRefGoogle Scholar
  30. 30.
    S. K. Singh, M. Neek-Amal, and F. M. Peeters, Phys. Rev. B 87, 134103 (2013).ADSCrossRefGoogle Scholar
  31. 31.
    J. H. Los, K. V. Zakharchenko, M. I. Katsnelson, and A. Fasolino, Phys. Rev. B 91, 045415 (2015).ADSCrossRefGoogle Scholar
  32. 32.
    L. A. Openov and A. I. Podlivaev, Phys. Solid State 58, 847 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations