JETP Letters

, Volume 109, Issue 11, pp 704–709 | Cite as

Generation of a Polarization Sensitive Photocurrent in a CuSe/Se Nanocomposite Thin Film

  • G. M. MikheevEmail author
  • V. Ya. Kogai
  • R. G. Zonov
  • K. G. Mikheev
  • T. N. Mogileva
  • Yu. P. Svirko
Condensed Matter


CuSe-based structures are widely used in various fields of photonics and optoelectronics. It has been shown for the first time that a photocurrent depending on the direction of the wave vector and polarization of the incident radiation can be excited in thin films consisting of amorphous Se and CuSe nanocrystallites. Films on glass substrates have been obtained by the successive thermal deposition of selenium and copper in vacuum at room temperature. The photocurrent has been excited by radiation of a femtosecond laser at a wavelength of 795 nm at room temperature. It has been found that the longitudinal photocurrent measured in the direction of the plane of incidence is maximal at p-polarization and vanishes at s-polarization. The transverse pho-tocurrent perpendicular to the plane of incidence is an odd function of the polarization angle and is absent at p- and s-polarizations. In both cases, the photocurrent is an odd function of the angle of incidence of light on the film surface. The results obtained are in qualitative agreement with the theory of generation of the surface photogalvanic effect.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Springer, New York, 2004).Google Scholar
  2. 2.
    V. L. Gurevich and R. Laiho, Phys. Solid State bd42, 1807 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    A. M. Danishevskii, A. A. Kastal’skii, S. M. Ryvkin, and I. D. Yaroshetskii, Sov. Phys. JETP bd31, 292 (1970).ADSGoogle Scholar
  4. 4.
    A. F. Gibson, M. F. Kimmitt, and A. C. Walker, Appl. Phys. Lett. bd17, 75 (1970).ADSCrossRefGoogle Scholar
  5. 5.
    E. V. Beregulin, P. M. Valov, S. M. Ryvkin, I. D. Yaro-shetskii, I. S. Lisker, and A. L. Pukshanskii, JETP Lett. bd25, 101 (1977).ADSGoogle Scholar
  6. 6.
    E. V. Beregulin, P. M. Voronov, S. V. Ivanov, P. S. Kop’ev, and I. D. Yaroshetskii, JETP Lett. bd59, 85 (1994).ADSGoogle Scholar
  7. 7.
    V. L. Al’perovich, V. I. Belinicher, V. N. Novikov, and A. S. Terekhov, Sov. Phys. Solid State bd24, 488 (1982).Google Scholar
  8. 8.
    V. M. Kovalev, A. E. Miroshnichenko, and I. G. Savenko, Phys. Rev. B bd98, 165405 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    L. I. Magarill and M. V. Entin, Sov. Phys. Solid State bd21, 743 (1979).Google Scholar
  10. 10.
    V. L. Al’perovich, V. I. Belinicher, V. N. Novikov, and A. S. Terekhov, JETP Lett. bd31, 546 (1980).ADSGoogle Scholar
  11. 11.
    L. I. Magarill and M. V. Entin, Sov. Phys. JETP bd54, 531 (1981).Google Scholar
  12. 12.
    V. L. Al’perovich, V. I. Belinicher, V. N. Novikov, and A. S. Terekhov, Sov. Phys. JETP bd53, 1201 (1981).Google Scholar
  13. 13.
    G. M. Mikheev, A. S. Saushin, V. M. Styapshin, and Y. P. Svirko, Sci. Rep. bd8, 8644 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    G. M. Mikheev, V. M. Styapshin, P. A. Obraztsov, E. A. Khestanova, and S. V. Garnov, Quantum Electron. bd40, 425 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, Phys. Rev. Lett. bd105, 227402 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    P. A. Obraztsov, G. M. Mikheev, S. V. Garnov, A. N. Obraztsov, and Y. P. Svirko, Appl. Phys. Lett. 98, 091903 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    G. M. Mikheev, A. G. Nasibulin, R. G. Zonov, A. Kaskela, and E. I. Kauppinen, Nano Lett. bd12, 77 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    M. M. Glazov and S. D. Ganichev, Phys. Rep. bd535, 101 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    A. S. Vengurlekar and T. Ishihara, Appl. Phys. Lett. bd87, 091118 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    N. Noginova, V. Rono, F. J. Bezares, and J. D. Cald-well, New J. Phys. bd15, 113061 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    M. Akbari, M. Onoda, and T. Ishihara, Opt. Express bd23, 823 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    G. M. Mikheev, R. G. Zonov, and V. A. Aleksandrov, Tech. Phys. Lett. bd36, 675 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    G. M. Mikheev, A. S. Saushin, V. V. Vanyukov, K. G. Mikheev, and Y. P. Svirko, Nanoscale Res. Lett. bd12, 39 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, J. Appl. Phys. bd105, 013106 (2008).ADSGoogle Scholar
  25. 25.
    G. M. Mikheev and V. M. Styapshin, Instrum. Exp. Tech. bd55, 85 (2012).CrossRefGoogle Scholar
  26. 26.
    M. Akbari and T. Ishihara, Opt. Express bd25, 2143 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    M. A. Malik, P. O’Brien, and N. Revaprasadu, Adv. Mater. bd11, 1441 (1999).CrossRefGoogle Scholar
  28. 28.
    A. Zhang, Q. Ma, Z. Wang, M. Lu, P. Yang, and G. Zhou, Mater. Chem. Phys. bd124, 916 (2010).CrossRefGoogle Scholar
  29. 29.
    T. P. Vinod, X. Jin, and J. Kim, Mater. Res. Bull. bd46, 340 (2011).CrossRefGoogle Scholar
  30. 30.
    G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, A. P. Volkov, and Yu. P. Svirko, Tech. Phys. bd51, 1190 (2006).CrossRefGoogle Scholar
  31. 31.
    V. Ya. Kogai, A. V. Vakhrushev, and A. Yu. Fedotov, JETP Lett. bd95, 454 (2012).ADSCrossRefGoogle Scholar
  32. 32.
    E. V. Aleksandrovich, E. V. Stepanova, K. G. Mikheev, and G. M. Mikheev, Tech. Phys. Lett. bd44, 797 (2018).ADSCrossRefGoogle Scholar
  33. 33.
    Y. Ma, H. Ji, Z. Jin, J. Wang, X. Zheng, R. Yuan, H. Li, and S. Zhao, Integr. Ferroelectr. bd181, 102 (2017).CrossRefGoogle Scholar
  34. 34.
    M. Ishii, K. Shibata, and H. Nozaki, J. Solid State Chem. bd105, 504 (1993).ADSCrossRefGoogle Scholar
  35. 35.
    R. E. Tallman, B. A. Weinstein, A. Reznik, M. Kubota, K. Tanioka, and J. A. Rowlands, J. Non-Cryst. Solids bd354, 4577 (2008).ADSCrossRefGoogle Scholar
  36. 36.
    K. Okano, I. Saito, T. Mine, Y. Suzuki, T. Yamada, N. Rupesinghe, G. A. J. Amaratunga, W. I. Milne, and D. R. T. Zahn, J. Non-Cryst. Solids bd353, 308 (2007).ADSCrossRefGoogle Scholar
  37. 37.
    A. H. Goldan, C. Li, S. J. Pennycook, J. Schneider, A. Blom, and W. Zhao, J. Appl. Phys. bd120, 135101 (2016).ADSCrossRefGoogle Scholar
  38. 38.
    V. M. Garcia, P. K. Nair, and M. T. S. Nair, J. Cryst. Growth bd203, 113 (1999).ADSCrossRefGoogle Scholar
  39. 39.
    S. R. Gosavi, N. G. Deshpande, Y. G. Gudage, and R. Sharma, J. Alloys Compd. bd448, 344 (2008).CrossRefGoogle Scholar
  40. 40.
    P. P. Hankare, A. S. Khomane, P. A. Chate, K. C. Rathod, and K. M. Garadkar, J. Alloys Compd. bd469, 478 (2009).CrossRefGoogle Scholar
  41. 41.
    E. I. Adirovich, Usp. Fiz. Nauk bd105, 746 (1971).CrossRefGoogle Scholar
  42. 42.
    J. I. Pankove, Phys. Status Solidi A bd61, 127 (1980).ADSCrossRefGoogle Scholar
  43. 43.
    Sh. B. Atakulov, S. M. Zainolobidinova, G. A. Nabiev, and O. A. Tukhtamatov, Semiconductors bd46, 708 (2012).ADSCrossRefGoogle Scholar
  44. 44.
    L. Zhu, Y. Huang, Z. Yao, B. Quan, L. Zhang, J. Li, C. Gu, X. Hu, and R. Zen, Nanoscale bd9, 10301 (2017).CrossRefGoogle Scholar
  45. 45.
    Y.-Q. Liu, H.-D. Wu, Y. Zhao, and G.-B. Pan, Lang-muir bd31, 4958 (2015).CrossRefGoogle Scholar
  46. 46.
    B. P. Zakharchenya, D. N. Mirlin, V. I. Perel’, and I. I. Reshina, Sov. Phys. Usp. bd25, 143 (1982).ADSCrossRefGoogle Scholar
  47. 47.
    V. L. Al’perovich, A. O. Minaev, and A. S. Terekhov, JETP Lett. bd49, 702 (1989).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • G. M. Mikheev
    • 1
    Email author
  • V. Ya. Kogai
    • 1
  • R. G. Zonov
    • 1
  • K. G. Mikheev
    • 1
  • T. N. Mogileva
    • 1
  • Yu. P. Svirko
    • 2
  1. 1.Institute of Mechanics, Udmurt Federal Research Center, Ural BranchRussian Academy of SciencesIzhevskRussia
  2. 2.Institute of PhotonicsUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations