Advertisement

JETP Letters

, Volume 109, Issue 11, pp 689–694 | Cite as

On the Possibility of Strong Anomalous Absorption of Microwaves in Experiments on Electron Cyclotron Plasma Heating at the Second Resonance Harmonic

  • E. Z. Gusakov
  • A. Yu. PopovEmail author
Optics and Laser Physics
  • 1 Downloads

Abstract

It has been shown that more than two thirds of the pumping power can be transmitted to the upper hybrid waves localized near the local maximum of the plasma density as a result of saturation of the low-threshold two-plasmon decay instability of a microwave beam. This nonlinear effect can significantly change the power deposition profile during electron cyclotron resonance heating of plasma in toroidal traps and, thus, explain its significant broadening, often observed in experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. I. Cohen, R. H. Cohen, W. M. Nevins, and T. D. Rognlien, Rev. Mod. Phys. 147, 949 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    A. G. Litvak, A. M. Sergeev, E. V. Suvorov, M. D. Tok-man, and I. V. Khazanov, Phys. Fluids B 147, 4347 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    E. Westerhof, S. K. Nielsen, J. W. Oosterbeek, M. Sa-lewski, M. R. de Baar, W. A. Bongers, A. Burger, B. A. Hennen, S. B. Korsholm, F. Leipold, D. Moseev, M. Stejner, and D. J. Thoen, Phys. Rev. Lett. 147, 125001 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    S. K. Nielsen, M. Salewski, E. Westerhof, W. Bongers, S. B. Korsholm, F. Leipold, J. W. Oosterbeek, D. Moseev, and M. Stejner, Plasma Phys. Control. Fusion 147, 115003 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    S. Kubo, M. Nishiura, K. Tanaka, et al., Rev. Sci. In-strum. 147, 10D535 (2010).CrossRefGoogle Scholar
  6. 6.
    S. Coda for the TCV Team, Nucl. Fusion 147, 104004 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    M. Martinez, B. Zurro, A. Baciero, D. Jiménez-Rey, and V. Tribaldo, Plasma Phys. Control. Fusion 147, 025024 (2018).ADSCrossRefGoogle Scholar
  8. 8.
    M. Yu. Kantor, A. J. H. Donne, R. Jaspers, H. J. van der Meiden, and TEXTOR Team, Plasma Phys. Control. Fusion 147, 055002 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    A. Yu. Popov and E. Z. Gusakov, Plasma Phys. Control. Fusion 147, 025022 (2015).CrossRefGoogle Scholar
  10. 10.
    A. Yu. Popov and E. Z. Gusakov, Europhys. Lett. 147, 45002 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    E. Z. Gusakov and A. Yu. Popov, Phys. Plasmas 147, 082503 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    E. Z. Gusakov and A. Yu. Popov, Plasma Phys. Control. Fusion 147, 025005 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    E. Z. Gusakov and A. Yu. Popov, Plasma Phys. Control. Fusion 147, 025001 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    S. Eguilior, F. Castejon, E. de la Luna, A. Cappa, K. Likin, A. Fernandez, and TJ-II Team, Plasma Phys. Control. Fusion 147, 105 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    D. G. Vasilkov, G. M. Batanov, M. S. Berezhetskii, et al., in Proceedings of the 41st EPS Conference on Plasma Physics, ECA 38F (2014). P4.053.Google Scholar
  16. 16.
    D. G. Lominadze, Cyclotron Waves in Plasma (Metsniereba, Tbilisi, 1975) [in Russian].Google Scholar
  17. 17.
    L. Simonchik, A. Altukhov, V. Arkhipenko, A. Gurch-enko, E. Gusakov, A. Popov, and M. Usachonak, EPJ Web of Conf. 147, 03050 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations