Comparative Study on Interatomic Force Constants and Elastic Properties of Zinc-blende AlN, AlP and AlAs

  • H. WangEmail author
  • Q. Tan
  • X. Zeng


The lattice constants, interatomic force constants and elastic constants of zinc-blende AlN, AlP and AlAs are calculated by first-principles pseudopotential plane wave method. The calculated lattice constants are underestimated owing to local density approximation itself and thermal expansion effect. Based on the density functional perturbation theory, the elastic properties of these materials are studied. The calculated values are affected by lattice constant, selection of pseudopotential and exchange-correlation energy. Based on the calculated elastic constants, Young’s modulus diagrams on (101) sides of these materials are drawn, which provides an important reference for the future research on the mechanics of such materials.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Mujica, A. Rubio, A. Munoz, and R. J. Needs, Rev. Mod. Phys. 75, 863 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, and T. Matsushita, Jpn. J. Appl. Phys. 35, L74 (1996).CrossRefGoogle Scholar
  3. 3.
    K. H. Kim, Z. Y. Fan, M. Khizar, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 85, 4777 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    W. A. Brantley, J. Appl. Phys. 44, 534 (1973).ADSCrossRefGoogle Scholar
  5. 5.
    A. A. Yamaguchi, Y. Mochizuki, C. Sasaoka, A. Kimura, M. Nido, and A. Usui, Appl. Phys. Lett. 71, 374 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    P. Rodriguez and A. Munoz, Semicond. Sci. Technol. 7, 1437 (1992).ADSCrossRefGoogle Scholar
  7. 7.
    N. Chetty, A. Muoz, and R. M. Martin, Phys. Rev. B 40, 11934 (1989).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Ciftci, K. Colakoglu, and E. Deligoz, Phys. Stat. Sol. (c) 4, 234 (2007).CrossRefGoogle Scholar
  9. 9.
    A. F. Wright, J. Appl. Phys. 82, 2833 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    I. Petrov, E. Mojab, R. C. Powell, J. E. Green, L. Hultman, and J. E. Sundgren, Appl. Phys. Lett. 60, 2491 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    G. Lucovsky, R. M. Martin, and E. Burstein, Phys. Rev. B 4, 1367 (1971).ADSCrossRefGoogle Scholar
  12. 12.
    N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    V. V. Sahni, K. Bohnen, and M. K. Harbola, Phys. Rev. A 3, 71895 (1988).Google Scholar
  14. 14.
    X. Gonze, J. M. Beuken, R. Caracas et al. (Collaboration), Comput. Mater. Sci. 25, 478 (2002).CrossRefGoogle Scholar
  15. 15.
    A. D. Corso, F. Mauri, and A. Rubio, Phys. Rev. B 53, 15638 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    P. Giannozzi and S. de Gironcoli, Phys. Rev. B 43, 7231 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    O. H. Nielsen and R. M. Martin, Phys. Rev. B 32, 3780 (1985).ADSCrossRefGoogle Scholar
  18. 18.
    J. F. Nye, Physical Properties of Crystals, Oxford University Press, Oxford (1957).zbMATHGoogle Scholar
  19. 19.
    K. Karch and F. Bechstedt, Phys. Rev. B 56, 7404 (1997).ADSCrossRefGoogle Scholar
  20. 20.
    K. Kim, W. R. L. Lambrecht, and B. Segall, Phys. Rev. B 53, 10310 (1996).CrossRefGoogle Scholar
  21. 21.
    E. Ruiz, S. Alvarez, and P. Alemany, Phys. Rev. B 49, 7115 (1994).ADSCrossRefGoogle Scholar
  22. 22.
    D. R. Hamann, X. Wu, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B 71, 035117 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    M. J. Herrera-Cabrera, P. Rodriguez-Hernandez, and A. Munoz, Phys. Stat. Sol. B 223, 411 (2001).ADSCrossRefGoogle Scholar
  24. 24.
    A. Bouhenadou, R. Khenata, and M. Kharoubi, Comput. Mater. Sci. 45, 474 (2009).CrossRefGoogle Scholar
  25. 25.
    B. Landolt, Semicondutors: Physics of Group IV Elements and III–V Compounds, Springer-Verlag, Berlin (1992), v. III/17a.Google Scholar
  26. 26.
    M. Krieger and H. Sigg, Appl. Phys. Lett. 66, 682 (1995).ADSCrossRefGoogle Scholar
  27. 27.
    C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58, 3641 (1998).ADSCrossRefGoogle Scholar
  28. 28.
    J. F. Nye, Physical Properties of Crystals. Their Representation by Tensors and Matrices, 2-nd ed., Oxford, Clarendon (1985).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Department of Physics and Electronic Information EngineeringXiangnan UniversityChenzhouThe People’s Republic of China

Personalised recommendations