JETP Letters

, Volume 109, Issue 9, pp 584–588 | Cite as

Argentite-Acanthite Transformation in Silver Sulfide as a Disorder-Order Transition

  • S. I. SadovnikovEmail author
  • A. I. Gusev
Condensed Matter


An alternative model has been proposed for the phase transition from cubic argentite ß-Ag2S to monoclinic acanthite α-Ag2S in silver sulfide as a disorder–order transition. It has been shown that, as the temperature decreases below the transition temperature Ttrans, S atoms equiprobably occupying the sites of the body centered cubic (bcc) nonmetal sublattice of argentite are concentrated at four sites of the monoclinic nonmetal sublattice, whereas the other sites remain vacant. A disorder-order transition channel including three superstructure vectors of k9 and k4 stars has been determined. The distribution function of sulfur atoms in monoclinic acanthite α-Ag2S has been calculated. It has been shown that displacements of sulfur atoms distort the bcc nonmetal sublattice of argentite, forming a monoclinic lattice, where silver atoms are spaced by quite large distances and occupy their crystallographic positions with a probability of 1. The region of allowed values of the long-range order parameters η9 and η4 for the model monoclinic ordered phase α-Ag2S has been determined.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Sharma and Y. A. Chang, Bull. Alloy Phase Diagrams 7, 263 (1986).Google Scholar
  2. 2.
    S. I. Sadovnikov, A. A. Rempel, and A. I. Gusev, Nanostructured Lead, Cadmium and Silver Sulfides: Structure, Nonstoichiometry and Properties (Springer Int., Cham, Heidelberg, 2018).CrossRefGoogle Scholar
  3. 3.
    W. T. Thompson and S. N. Flengas, Can. J. Chem. 49, 1550 (1971).CrossRefGoogle Scholar
  4. 4.
    A. I. Gusev and S. I. Sadovnikov, Semiconductors 50, 682 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    R. Sadanaga and S. Sueno, Mineralog. J. Jpn. 5, 124 (1967).ADSCrossRefGoogle Scholar
  6. 6.
    J. B. Boyce and B. A. Hubermam, Phys. Rep. 51, 189 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    K. Honma and K. Iida, J. Phys. Soc. Jpn. 56, 1828 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    O. Alekperov, Z. Jahangirli, and R. Paucar, Phys. Status Solidi B 253, 1 (2016).CrossRefGoogle Scholar
  9. 9.
    A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides (Springer, Berlin, 2001).CrossRefGoogle Scholar
  10. 10.
    A. I. Gusev, Nonstoichiometry and Chaos, Short- and Long-Range Orders in Solids (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  11. 11.
    A. A. Rempel and A. I. Gusev, Nonstoichiometry in Solids (Fizmatlit, Moscow, 2018) [in Russian].Google Scholar
  12. 12.
    A. I. Gusev and A. A. Rempel, Phys. Status Solidi A 135, 15 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    A. G. Khachaturyan, Theory of Phase Transformations and the Structure of Solid Solutions (Nauka, Moscow, 1974) [in Russian].Google Scholar
  14. 14.
    O. V. Kovalev, Irreducible and Induced Representations and Corepresentations of Fedorov’s Groups (Nauka, Moscow, 1986) [in Russian].Google Scholar
  15. 15.
    Yu. A. Izyumov, V. E. Naish, and R. P. Ozerov, Neutron Diffraction of Magnetic Materials (Atomizdat, Moscow, 1981; Consultants Bureau, New York, 1991).Google Scholar
  16. 16.
    T. Blanton, S. Misture, N. Dontula, and S. Zdzies-zynski, Powder Diffract. 26, 110 (2011).ADSGoogle Scholar
  17. 17.
    S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Phys. Chem. Chem. Phys. 17, 20495 (2015).CrossRefGoogle Scholar
  18. 18.
    S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Superlatt. Microstruct. 83, 35 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    F. Grønvold and E. F. Westrum, J. Chem. Thermodyn. 18, 381 (1986).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Solid State Chemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations