Advertisement

JETP Letters

, Volume 109, Issue 9, pp 600–605 | Cite as

Structure and Dynamic Stability of a Multilayer Na Film on the Cu(001) Surface

  • G. G. RusinaEmail author
  • S. D. Borisova
  • E. V. Chulkov
Condensed Matter
  • 2 Downloads

Abstract

Mechanisms of atomic layer-by-layer formation of the equilibrium structure of multilayer Na film on the Cu(001) surface have been studied taking into account relaxation and dynamic (phonon) processes. It has been shown that the atomic rearrangement of the substrate-commensurate с(2 × 2) superstructure of the first Na monolayer to a bcc (110)-oriented structure begins with the second monolayer. The dynamic contribution to the formation of the structure of the growing Na film has been estimated. It has been shown that phonon modes select exponentially observed structures from statically favorable structures. All calculations have been performed with interatomic potentials constructed with the embedded atom method. The comparison of the calculated vibrational frequencies with the existing experimental data has demonstrated their good agreement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. Diehl and R. McGrath, J. Phys.: Condens. Matter 9, 951 (1997).ADSGoogle Scholar
  2. 2.
    G. G. Rusina, S. V. Eremeev, P. M. Echenique, G. Benedek, S. D. Borisova, and E. V. Chulkov, J. Phys.: Condens. Matter 20, 224007 (2008).ADSGoogle Scholar
  3. 3.
    A. Politano, G. Chiarello, G. Benedek, E. V. Chulkov, and P. M. Echenique, Surf. Sci. Rep. 68, 305 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    R. Fasel and J. Osterwalder, Surf. Rev. Lett. 2, 359(1995).ADSCrossRefGoogle Scholar
  5. 5.
    H. Tochihara and S. Mizuno, Prog. Surf. Sci. 58, 1 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    A. P. Graham and J. P. Toennies, Phys. Rev. B 56, 15378 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    N. S. Luo, P. Ruggerone, and J. P. Toennies, Phys. Rev. B 54, 5051 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    R. Heid and K. P. Bohnen, Phys. Rep. 387, 151 (2003).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    G. G. Rusina and E. V. Chulkov, Russ. Chem. Rev. 82, 483 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    T. Aruga, H. Tochihara, and Y. Murata, Phys. Rev. Lett. 52, 1794 (1984).ADSCrossRefGoogle Scholar
  11. 11.
    P. Senet, J. P. Toennies, and G. Witte, Chem. Phys. Lett. 299, 389 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    G. Benedek, J. Ellis, A. Reichmuth, P. Ruggerone, H. Schief, and J. P. Toennies, Phys. Rev. Lett. 69, 2951 (1992).ADSCrossRefGoogle Scholar
  13. 13.
    C. Astaldi, P. Petra-Rudolf, and S. Modesti, Solid State Commun. 75, 847 (1990).ADSCrossRefGoogle Scholar
  14. 14.
    D. Levesque and L. Verlet, J. Stat. Phys. 72, 519 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    R. A. Johnson, Phys. Rev. B 39, 12554 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    D. M. Lind, F. B. Dunning, G. K. Walters, and H. L. Davis, Phys. Rev. B 35, 9037 (1987).ADSCrossRefGoogle Scholar
  18. 18.
    A. Mikkelsen and D. L. Adams, Phys. Rev. B 60, 2040 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    S. Andersson, J. B. Pendry, and P. M. Echenique, Surf. Sci. 65, 539 (1977).ADSCrossRefGoogle Scholar
  20. 20.
    I. Yu. Sklyadneva, E. V. Chulkov, and A. V. Bertsch, Surf. Sci. 352, 25 (1996).Google Scholar
  21. 21.
    M. J. Kelly, Phys. F: Met. Phys. 9, 1921 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • G. G. Rusina
    • 1
    • 2
    Email author
  • S. D. Borisova
    • 1
    • 2
  • E. V. Chulkov
    • 2
    • 3
  1. 1.Institute of Strength Physics and Materials Science, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia
  3. 3.Departamento de Física de Materiales, UPV/EHU, and CFMCentro Mixto CSIC-UPV/EHUSan SebastiánSpain

Personalised recommendations