Advertisement

JETP Letters

, Volume 109, Issue 9, pp 589–593 | Cite as

Phase Diagram of the Antiferromagnetic Heisenberg Model on a Cubic Lattice

  • M. K. RamazanovEmail author
  • A. K. Murtazaev
Condensed Matter

Abstract

Phase transitions in the antiferromagnetic Heisenberg model on a cubic lattice with intralayer next-nearest neighbor interactions are studied using the replica Monte Carlo algorithm. The magnitude of next-nearest neighbor interactions varies in the range of 0.0 ≤ r ≤ 1.0. The characteristics of the phase transitions are analyzed by the histogram and Binder cumulant techniques. The phase diagram relating the transition temperature and the magnitude of next-nearest neighbor interactions is constructed. It is shown that a second order phase transition occurs in the r range under study. In this model, it is found that the intralayer next-nearest neighbor interactions do not change the order of the phase transition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.S. Dotsenko, Phys. Usp. 38, 457 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    S.E. Korshunov, Phys. Usp. 49, 225 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    A. Malakis, P. Kalozoumis, and N. Tyraskis, Eur. Phys. J. B 50, 63 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    S.S. Sosin, L.A. Prozorova, and A.I. Smirnov, Phys. Usp. 48, 83 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    A.K. Murtazaev, M.K. Ramazanov, and M. K. Badiev, J. Low Temp. Phys. 37, 1001 (2011).CrossRefGoogle Scholar
  6. 6.
    A.K. Murtazaev, M.K. Ramazanov, F. A. Kasan-Ogly, and M.K. Badiev, J. Exp. Theor. Phys. 117, 1091 (2013).CrossRefGoogle Scholar
  7. 7.
    F. A. Kassan-Ogly, B.N. Filippov, A.K. Murtazaev, M.K. Ramazanov, and M.K. Badiev, J. Magn. Magn. Mater. 324, 3418 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    A. Kalz and A. Honecker, Phys. Rev. B 86, 134410 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    S. Jin, A. Sen, and A.W. Sandvik, Phys. Rev. Lett. 108, 045702 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    S. Jin, A. Sen, W. Guo, and A.W. Sandvik, Phys. Rev. B 87, 144406 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    M. K. Ramazanov and A.K. Murtazaev, JETP Lett. 101, 714 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    M. K. Ramazanov and A.K. Murtazaev, JETP Lett. 103, 460 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    D. P. Landau and K. Binder, Monte Carlo Simulations in Statistical Physics (Cambridge Univ. Press, Cambridge, 2000).zbMATHGoogle Scholar
  14. 14.
    C. Pinettes and H.T. Diep, J. Appl. Phys. 83, 6317 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    V. Thanh Ngo and H.T. Diep, Phys. Rev. E 78, 031119 (2008).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    M. K. Ramazanov and A.K. Murtazaev, JETP Lett. 106, 86 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    A.K. Murtazaev, M.A. Magomedov, and M. K. Ra-mazanov, JETP Lett. 107, 259 (2018).ADSCrossRefGoogle Scholar
  18. 18.
    A. Mailhot, M.L. Plumer, and A. Caille, Phys. Rev. B 50, 6854 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    A.K. Murtazaev, M.K. Ramazanov, and M.K. Badiev, Phys. B (Amsterdam, Neth.) 476, 1 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    M.K. Ramazanov, A.K. Murtazaev, and M. A. Magomedov,Solid State Commun. 233, 35 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    M.K. Badiev, A.K. Murtazaev, and M. K. Ramazanov, J. Exp. Theor. Phys. 123, 623 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    A. Mitsutake, Y. Sugita, and Y. Okamoto, Biopolymers (Peptide Sci.) 60, 96 (2001).CrossRefGoogle Scholar
  23. 23.
    K. Binder and D.W. Heermann, Monte Carlo Methods in Statistical Physics (Springer, Berlin, 1979).CrossRefzbMATHGoogle Scholar
  24. 24.
    F. Wang and D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    F. Wang and D.P. Landau, Phys. Rev. E 64, 056101 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    M.K. Ramazanov, JETP Lett. 94, 311 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Amirkhanov Institute of Physics, Dagestan Scientific CenterRussian Academy of SciencesMakhachkalaRussia

Personalised recommendations