Advertisement

JETP Letters

, Volume 109, Issue 9, pp 610–614 | Cite as

Rearrangement of the Ultrasmooth Surface of La3Ga5SiO14 Crystals at Heating

  • A. E. MuslimovEmail author
  • A. V. Butashin
  • Yu. V. Grigor’ev
  • V. M. Kanevsky
Condensed Matter

Abstract

The morphology and phase composition of the surface of La3Ga5SiO14 (langasite) crystals at annealing in a temperature range 1000–1200°C have been studied using electron and atomic force microscopy. It has been shown that trigonal lanthanum oxide (La2O3) crystals with sizes to 3–4 μm, as well as a microstructure with sizes to 50 μm with gallium excess, with the approximate composition of 15 mol % La2O3, 65 mol % Ga2O3, and 20 mol % SiO2 are formed on the surface of langasite crystals annealed in air at temperatures above 1100°C. Possible reasons for thermal destruction of the compound can be a significant rearrangement of the disordered crystal structure of langasite caused by the interaction with air oxygen and under the intense surface diffusion of atoms of the crystal, as well as the incongruent character of melting of the La3Ga5SiO14 compound. The revealed thermal destruction of the surface of langasite crystals should be taken into account when using this material to fabricate piezoelectric elements for operation at high temperatures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. V. Mill’, G. G. Khodzhabagyan, E. L. Belokoneva, A. V. Butashin, and N. V. Belov, Sov. Phys. Dokl. 27, 434 (1982).ADSGoogle Scholar
  2. 2.
    A. A. Kaminskii, B. V. Mill’, I. M. Sil’vestrova, and G. G. Khodzhabagyan, Izv. Akad. Nauk SSSR, Ser. Fiz. 47, 1903 (1983).ADSGoogle Scholar
  3. 3.
    I. A. Andreev and M. F. Dubovik, Sov. Tech. Phys. Lett. 10, 205 (1984).Google Scholar
  4. 4.
    B. V. Mill and Yu. V. Pisarevski, in Proceedings of the International 2000 Frequency Control Symposium (IEEE/EIA, Kansas City, 2000), p. 133.Google Scholar
  5. 5.
    M. Schulz, J. Sauerwald, D. Richter, and H. Fritze, Ionics 15, 157 (2009).CrossRefGoogle Scholar
  6. 6.
    O. M. Kugaenko, S. S. Bazalevskaya, T. B. Sagalova, V. S. Petrakov, O. A. Buzanov, and S. A. Sakharov, Bull. Russ. Acad. Sci.: Phys. 78, 1067 (2014).CrossRefGoogle Scholar
  7. 7.
    D. G. Gromov, S. A. Gavrilov, E. N. Redichev, and R. M. Ammosov, Phys. Solid State 49, 178 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    A. E. Muslimov, A. V. Butashin, V. M. Kanevsky, A. N. Deryabin, E. A. Vovk, and V. A. Babaev, Crystallogr. Rep. 63, 234 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    A. E. Muslimov, V. E. Asadchikov, A. V. Butashin, V. P. Vlasov, A. N. Deryabin, B. S. Roshchin, S. N. Sulyanov, and V. M. Kanevsky, Crystallogr. Rep. 61, 730 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    M. Seifert, G. K. Rane, B. Kirbus, S. Menzel, and T. Gemming, Materials 8, 8868 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    M. Schulz, E. Mayer, I. Shrena, D. Eisele, M. Schmitt, L. M. Reindl, and H. Fritze, J. Sens. Sens. Syst. 4, 331 (2015).CrossRefGoogle Scholar
  12. 12.
    H. E. Swanson and R. K. Fuyat, Natl. Bur. Stand. (U.S.). Circ. 539, 47 (1954).Google Scholar
  13. 13.
    G. G. Khodzhabagyan and B. V. Mill’, Zh. Neorg. Khim. 32, 444 (1987).Google Scholar
  14. 14.
    K. Kyuno and G. Ehrlich, Surf. Sci. 437, 29 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    S.-Q. Wang and S. Uda, J. Cryst. Growth 250, 463 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    N. S. Kozlova, O. A. Buzanov, E. V. Zabelina, A. P. Kozlova, and M. B. Bykova, Crystallogr. Rep. 61, 697 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    A. V. Butashin, A. E. Muslimov, V. M. Kanevsky, A. N. Deryabin, V. A. Pavlov, and V. E. Asadchikov, Crystallogr. Rep. 58, 483 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. E. Muslimov
    • 1
    Email author
  • A. V. Butashin
    • 1
  • Yu. V. Grigor’ev
    • 1
  • V. M. Kanevsky
    • 1
  1. 1.Shubnikov Institute of Crystallography, Federal Research Center Crystallography and PhotonicsRussian Academy of SciencesMoscowRussia

Personalised recommendations