Advertisement

JETP Letters

, Volume 109, Issue 9, pp 559–563 | Cite as

Mass Composition of Cosmic Rays with Energies above 1017 eV According to the Data from the Muon Detectors of the Yakutsk EAS Array

  • A. V. GlushkovEmail author
  • A. V. SaburovEmail author
Astrophysics and Cosmology

Abstract

The lateral distribution of muons in extensive air showers with energies above 1017 eV detected by underground scintillation detectors with a threshold of 1.0 GeV at the Yakutsk array in 1986–2016 has been analyzed. The experimental data on the muon flux density at a distance of 300 m from the shower axis have been compared to the calculations within various models of hadron interactions at ultrahigh energies. The experimental data are in the best agreement with the QGSJet01 and QGSJet II-04 models. The mass composition of cosmic rays in the energy range of (1–30) × 1017 eV changes from middle nuclei to a purely proton composition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. K. F. Grieder, Extensive Air Showers: High Energy Phenomena and Astrophysical Aspects (Springer, Berlin, 2010).zbMATHGoogle Scholar
  2. 2.
    A. V. Glushkov, V. M. Grigoriev, N. N. Efimov, M. I. Pravdin, O. S. Diminstein, and V. P. Sokurov, in Proceedings of the 16th ICRC, Kyoto, 1979, Ed. by S. Miyake and N. Gakujutsu Kaigi (Tokyo, 1979), p. 158.Google Scholar
  3. 3.
    A. V. Glushkov, Cand. Sci. Dissertation (Skobeltsyn Inst. Nucl. Phys., Moscow State Univ., Moscow, 1982).Google Scholar
  4. 4.
    A. V. Glushkov, L. G. Dedenko, N. N. Efimov, N. N. Efremov, I. T. Makarov, P. D. Petrov, and M. I. Pravdin, Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 2166 (1986).Google Scholar
  5. 5.
    A. V. Glushkov, M. I. Pravdin, I. E. Sleptsov, V. R. Sleptsova, and N. N. Kalmykov, Phys. At. Nucl. 63, 1477 (2000).CrossRefGoogle Scholar
  6. 6.
    A. V. Glushkov and A. V. Saburov, JETP Lett. 98, 589 (2013).Google Scholar
  7. 7.
    E. G. Berezhko, S. P. Knurenko, and L. T. Ksenofontov, Astropart. Phys. 36, 31 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    J. R. Horandel, J. Phys.: Conf. Ser. 47, 41 (2006).ADSGoogle Scholar
  9. 9.
    A. V. Saburov, Cand. Sci. Dissertation (Inst. Nucl. Res. RAS, Moscow, 2018).Google Scholar
  10. 10.
    N. N. Kalmykov, S. S. Ostapchenko, and A. I. Pavlov, Nucl. Phys. B Proc. Suppl. 52, 17 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    S. Ostapchenko, Phys. Rev. D 83, 014018 (2011); arXiv:1010.1869 [hep-ph].ADSCrossRefGoogle Scholar
  12. 12.
    T. Pierog, Iu. Karpenko, J. M. Katzy, E. Yatsenko, and K. Werner, Phys. Rev. C 92, 034906 (2015); arXiv:1306.0121 [hep-ph].Google Scholar
  13. 13.
    E.-J. Ahn, R. Engel, T. K. Gaisser, P. Lipari, and T. Stanev, Phys. Rev. D 80, 094003 (2009); arXiv:0906. 4113 [hep-ph].Google Scholar
  14. 14.
    D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw, Forschungszentrum Karlsruhe Report FZKA 6019 (Karlsruhe, 1988).Google Scholar
  15. 15.
    A. V. Glushkov, M. I. Pravdin, and A. V. Saburov, Astron. Lett. 44, 588 (2018).ADSCrossRefGoogle Scholar
  16. 16.
    A. V. Glushkov, M. I. Pravdin, and A. V. Saburov, Phys. At. Nucl. 81, 575 (2018).CrossRefGoogle Scholar
  17. 17.
    K. Greisen, Annu. Rev. Nucl. Sci. 10, 63 (1960).ADSCrossRefGoogle Scholar
  18. 18.
    H. P. Dembinsky, J. C. Arteaga-Velázquez, L. Cazon, et al. (for the WHISP group), in Proceedings of the UHECR2018, Paris, 2018, Talk ID 64367, EPJ Web of Conf. (2019, in press); arXiv: 1902.08124 [astroph. HE].Google Scholar
  19. 19.
    J. G. Gonzales, M. G. Aartsen, M. Ackermann, et al. (IceCube Collab.), in Proceedings of the 20th ISVHECRI, Nagoya, 2018, Talk ID 2964861, EPJ Web of Conf. (2019, in press).Google Scholar
  20. 20.
    A. G. Bogdanov, D. M. Gromushkin, R. P. Kokoulin, G. Mannocchi, A. A. Petrukhin, O. Saavedra, G. Trinchero, D. V. Chernov, V. V. Shutenko, and I. I. Yashin, Phys. At. Nucl. 73, 1852 (2010).CrossRefGoogle Scholar
  21. 21.
    A. G. Bogdanov, R. P. Kokoulin, G. Mannocchi, A. A. Petrukhin, O. Saavedra, V. V. Shutenko, G. Trinchero, and I. I. Yashin, Astropart. Phys. 98, 13 (2018).ADSCrossRefGoogle Scholar
  22. 22.
    Yu. A. Fomin, N. N. Kalmykov, I. S. Karpikov, G. V. Kulikov, M. Yu. Kuznetsov, G. I. Rubtsov, V. P. Sulakov, and S. V. Troitsky, Astropart. Phys. 92, 1 (2017); arXiv:1609.05764 [astro-ph.HE].ADSCrossRefGoogle Scholar
  23. 23.
    A. Aab, P. Abreu, M. Aglietta., et al. (Pierre Auger Collab.), Phys. Rev. D 91, 032003 (2015); arXiv:1408.1421 [astro-ph.HE].Google Scholar
  24. 24.
    A. Aab, P. Abreu, M. Aglietta, et al. (Pierre Auger Collab.), Phys. Rev. Lett. 117, 192001 (2016); arXiv:1610.08509 [hep-ex].ADSCrossRefGoogle Scholar
  25. 25.
    S. Muller, A. Aab, P. Abreu, et al. (Pierre Auger Collab.), in Proceedings of the UHECR2018, Paris, 2018, Talk ID 65721; EPJ Web of Conf. (2019, in press).Google Scholar
  26. 26.
    H. Ulrich, T. Antoni, W. D. Apel, et al. (KASCADE Collab.), in Proceedings of the 27th ICRC, Hamburg, 2001, Ed. by K.-H. Kampert, G. Hainzelmann, and C. Spiering (Copernicus, Berlin, 2001), Vol. 2, p. 97.Google Scholar
  27. 27.
    V. V. Prosin, S. F. Berezhnev, N. M. Budnev, et al. (Tunka Collab.), Nucl. Instrum. Methods Phys. Res., Sect. A 756, 94 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    J. Bellido (for the Pierre Auger Collab.), in Proceedings of the 35th ICRS, Busan, 2017, PoS(ICRC2017)506.Google Scholar
  29. 29.
    R. U. Abbasi, M. Abe, T. Abu-Zayyad, et al. (Telescope Array Collab.), Astrophys. J. 858, 76 (2018); arXiv:1801.09784 [astro-ph.HE].ADSCrossRefGoogle Scholar
  30. 30.
    R. U. Abbasi, M. Abe, T. Abu-Zayyad, et al. (Telescope Array Collab.), Phys. Rev. D 99, 022002 (2019); arXiv:1808.03680 [astro-ph.HE].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Shafer Institute of Cosmophysical Research and Aeronomy, Yakut Research Center, Siberian BranchRussian Academy of SciencesYakutskRussia

Personalised recommendations