Advertisement

JETP Letters

, Volume 109, Issue 9, pp 594–599 | Cite as

Kinetics of the Atomic Structure of Palladium Nanoparticles during the Desorption of Hydrogen According to X-Ray Diffraction

  • A. L. BugaevEmail author
  • A. A. GudaEmail author
  • K. A. Lomachenko
  • A. V. Soldatov
Condensed Matter

Abstract

The process of desorption of hydrogen from small palladium nanoparticles is monitored by time-resolved synchrotron X-ray diffraction. Changes in the diffraction patterns corresponding to the transition from the palladium β-phase to the α-phase are detected with an accuracy of 0.3 s. The model of the continuous change in the size of the β-phase region can be excluded, since the Rietveld analysis does not reveal a broadening of the diffraction peaks corresponding to the palladium lattice during desorption. The theoretical simulation shows the presence of a surface/core interface with different average cell parameters. However, the near-surface layers of the nanoparticle make a lower contribution to the observed diffraction reflections because of a lower crystallinity. The cell parameter in the nanoparticle core depends on the hydrogen concentration both in the core itself and in the shell due to the presence of stresses at the interface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Binder, Phys. Rev. Lett. 45, 811 (1980).ADSCrossRefGoogle Scholar
  2. 2.
    E. A. Brener, V. I. Marchenko, and R. Spatschek, Phys. Rev. E 75, 041604 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    R. B. Schwarz and A. G. Khachaturyan, Phys. Rev. Lett. 74, 2523 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    A. Borgschulte, R. Gremaud, and R. Griessen, Phys. Rev. B 78, 094106 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    V. P. Zhdanov, A. Krozer, and B. Kasemo, Phys. Rev. B 47, 11044 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    M. Yamauchi, R. Ikeda, H. Kitagawa, and M. Takata, J. Phys. Chem. C 112, 3294 (2008).CrossRefGoogle Scholar
  7. 7.
    H. Jobic and A. Renouprez, J. Less-Common Met. 129, 311 (1987).CrossRefGoogle Scholar
  8. 8.
    B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, and S. Brown, Phys. Rev. B 78, 245408 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    D. Narehood, S. Kishore, H. Goto, J. Adair, J. Nelson, H. Gutierrez, and P. Eklund, Int. J. Hydrogen Energ. 34, 952 (2009).CrossRefGoogle Scholar
  10. 10.
    A. L. Bugaev, A. A. Guda, K. A. Lomachenko, L. A. Bugaev, and A. V. Soldatov, Bull. Russ. Acad. Sci.: Phys. 79, 1180 (2015).CrossRefGoogle Scholar
  11. 11.
    D. Teschner, J. Borsodi, A. Wootsch, Z. Revay, M. Havecker, A. Knop-Gericke, S. D. Jackson, and R. Schlogl, Science (Washington, DC, U. S.) 320, 86 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    C. Langhammer, V. P. Zhdanov, I. Zoric, and B. Kasemo, Phys. Rev. Lett. 104, 135502 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    D. Matsumura, Y. Okajima, Y. Nishihata, and J. Mizuki, J. Alloys Compd. 509, S849 (2011).CrossRefGoogle Scholar
  14. 14.
    A. Piovano, A. Lazzarini, R. Pellegrini, G. Leofanti, G. Agostini, S. Rudic, A. L. Bugaev, C. Lamberti, and E. Groppo, Adv. Condens. Matter Phys. 2015, 803267 (2015).CrossRefGoogle Scholar
  15. 15.
    A. L. Bugaev, A. A. Guda, K. A. Lomachenko, V. V. Shapovalov, A. Lazzarini, J. G. Vitillo, L. A. Bugaev, E. Groppo, R. Pellegrini, A. V. Soldatov, J. A. van Bokhoven, and C. Lamberti, J. Phys. Chem. C 121, 18202 (2017).CrossRefGoogle Scholar
  16. 16.
    A. L. Bugaev, A. A. Guda, K. A. Lomachenko, A. Lazzarini, V. V. Srabionyan, J. G. Vitillo, A. Piovano, E. Groppo, L. A. Bugaev, A. V. Soldatov, V. P. Dmitriev, R. Pellegrini, J. A. van Bokhoven, and C. Lamberti, J. Phys.: Conf. Ser. 712, 012032 (2016).Google Scholar
  17. 17.
    A. L. Bugaev, A. A. Guda, A. Lazzarini, K. A. Lomachenko, E. Groppo, R. Pellegrini, A. Piovano, H. Emerich, A. V. Soldatov, L. A. Bugaev, V. P. Dmitriev, J. A. van Bokhoven, and C. Lamberti, Catal. Today 283, 119 (2017).CrossRefGoogle Scholar
  18. 18.
    A. L. Bugaev, O. A. Usoltsev, A. Lazzarini, K. A. Lomachenko, A. A. Guda, R. Pellegrini, M. Carosso, J. G. Vitillo, E. Groppo, J. A. van Bokhoven, A. V. Soldatov, and C. Lamberti, Faraday Discuss. 208, 187 (2018).ADSCrossRefGoogle Scholar
  19. 19.
    W. van Beek, O. V. Safonova, G. Wiker, and H. Emerich, Phase Trans. 84, 726 (2011).CrossRefGoogle Scholar
  20. 20.
    J. Kieffer and J. P. Wright, Powder Diffract. 28, S339 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    V. Petříček, M. Dušek, and L. Palatinus, Z. Kristallogr. - Cryst. Mater. 229, 345 (2014).Google Scholar
  22. 22.
    P. E. Blochl, Phys. Rev. B 50, 17953 (1994).ADSCrossRefGoogle Scholar
  23. 23.
    G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).ADSCrossRefGoogle Scholar
  24. 24.
    N. Pinna, in Scattering Methods and the Properties of Polymer Materials, Ed. by N. Stribeck and B. Smarsly (Springer, Berlin, Heidelberg, 2005), p. 29.Google Scholar
  25. 25.
    A. A. Skorynina, A. A. Tereshchenko, O. A. Usoltsev, A. L. Bugaev, K. A. Lomachenko, A. A. Guda, E. Groppo, R. Pellegrini, C. Lamberti, and A. Soldatov, Radiat. Phys. Chem. (in press).  https://doi.org/10.1016/j.radphyschem.2018.11.033
  26. 26.
    A. L. Bugaev, A. A. Guda, I. A. Pankin, E. Groppo, R. Pellegrini, A. Longo, A. V. Soldatov, and C. Lamberti, Catal. Today (in press).  https://doi.org/10.1016/j.cattod.2019.02.068
  27. 27.
    A. L. Bugaev, A. A. Guda, K. A. Lomachenko, V. V. Srabionyan, L. A. Bugaev, A. V. Soldatov, C. Lamberti, V. P. Dmitriev, and J. A. van Bokhoven, J. Phys. Chem. C 118, 10416 (2014).CrossRefGoogle Scholar
  28. 28.
    C. Wadell, T. Pingel, E. Olsson, I. Zoric, V. P. Zhdanov, and C. Langhammer, Chem. Phys. Lett. 603, 75 (2014).ADSCrossRefGoogle Scholar
  29. 29.
    V. P. Zhdanov and B. Kasemo, Chem. Phys. Lett. 460, 158 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    B. D. Kay, C. H. F. Peden, and D. W. Goodman, Phys. Rev. B 34, 817 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.The Smart Materials Research InstituteSouthern Federal UniversityRostov-on-DonRussia
  2. 2.European Synchrotron Radiation FacilityGrenoble Cedex 9France

Personalised recommendations