Advertisement

JETP Letters

, Volume 109, Issue 9, pp 578–583 | Cite as

Stimulated Low-Frequency Scattering of Light in an Aqueous Suspension of the Tobacco Mosaic Virus

  • M. V. Arkhipenko
  • A. F. Bunkin
  • M. A. DavydovEmail author
  • O. V. Karpova
  • V. B. Oshurko
  • S. M. Pershin
  • V. N. Streltsov
  • A. N. Fedorov
Optics and Laser Physics

Abstract

Stimulated low-frequency scattering of light by aqueous suspensions of the tobacco mosaic virus with the scattering frequency depending on the concentration of the virus is observed for the first time. For concentrations of ∼1 × 1012 and ∼2 × 1012 cm–3, the Stokes components of scattered light are shifted by ∼43.99 and ∼31.08 GHz, respectively. At the same time, the competing process of stimulated Brillouin scattering in these heterogeneous media is suppressed. The theory of stimulated emission resulting from normal-mode vibrations of solvent-molecule-loaded cylindrical nanoparticles driven by ponderomotive forces in the field of two copropagating pump electromagnetic waves is developed for the first time. The theoretically estimated frequency shift of the Stokes component is ∼50 GHz, which agrees with the experimental result. It remains unclear why a decrease in the thickness of the liquid layer with a simultaneous increase in concentration selectively favors a decrease in the frequency of coherent normal-mode vibrations of the virus participating in stimulated low-frequency scattering.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. V. Tcherniega, K. I. Zemskov, V. V. Savranskii, A. D. Kudryavtseva, A. Yu. Olenin, and G. V. Lisichkin, Opt. Lett. 38, 824 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    J. Shi, H. Wu, J. Liu, Sh. Li, and X. He, Sci. Rep. 2015, 11964 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    A. F. Bunkin, M. A. Davydov, A. N. Fedorov, V. N. Lednev, and S. M. Pershin, Laser Phys. Lett. 16, 015701 (2019).ADSCrossRefGoogle Scholar
  4. 4.
    N. V. Tcherniega, S. M. Pershin, A. F. Bunkin, E. K. Donchenko, O. V. Karpova, A. D. Kudryavtseva, V. N. Lednev, T. V. Mironova, M. A. Shevchenko, M. A. Strokov, and K. I. Zemskov, Laser Phys. Lett. 15, 095603 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    A. F. Bunkin, V. G. Mikhalevich, S. M. Pershin, V. N. Streltsov, and N. V. Tcherniega, Phys. Wave Phenom. 25, 254 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    O. Karpova, N. Nikitin, S. Chirkov, E. Trifonova, A. Sheveleva, E. Lazareva, and J. Atabekov, J. Gen. Virol. 93, 400 (2012).CrossRefGoogle Scholar
  7. 7.
    I. Ermolina, H. Morgana, N. G. Greena, J. J. Milnerb, and Yu. Feldman, Biochim. Biophys. Acta 1622, 57 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • M. V. Arkhipenko
    • 1
  • A. F. Bunkin
    • 2
  • M. A. Davydov
    • 2
    Email author
  • O. V. Karpova
    • 1
  • V. B. Oshurko
    • 2
  • S. M. Pershin
    • 2
  • V. N. Streltsov
    • 2
  • A. N. Fedorov
    • 2
  1. 1.Faculty of BiologyMoscow State UniversityMoscowRussia
  2. 2.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations