JETP Letters

, Volume 109, Issue 9, pp 606–609 | Cite as

Electron—Phonon Interaction, Phonon and Electronic Structures of Layered Electride Ca2N

  • B. N. Mavrin
  • M. E. Perminova
  • Yu. E. LozovikEmail author
Condensed Matter


The phonon and electronic properties, the Eliashberg function and the temperature dependence of resistance of electride Ca2N are investigated by the DFT-LDA (density functional theory in local density approximation) plane-wave method. The phonon dispersion, the partial phonon density of states and the atomic eigenvectors of zero-center phonons are studied. The electronic band dispersion and partial density of states conclude that Ca2N is a metal and the Ca 3p, 4s and N 2p orbitals are hybridized. For the analysis of an electron-phonon interaction and its contribution of the Eliashberg function to resistance was calculated and a temperature dependence of resistance due to electron-phonon interaction was found.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Cudazzo and M. Gatti, Phys. Rev. B 96, 125131 (2017).ADSCrossRefGoogle Scholar
  2. 2.
    D. L. Druffel, K. L. Kuntz, A. H. Woomer, F. M. Alcorn, J. Hu, C. L. Donley, and S. C. Warren, J. Am. Chem. Soc. 138, 16089 (2016).CrossRefGoogle Scholar
  3. 3.
    M. Hiraishi, K. M. Kojima, I. Yamauchi, H. Okabe, S. Takeshita, A. Koda, R. Kadono, X. Zhang, S. Matsuishi, H. Hosono, K. Hirata, S. Otani, and N. Ohashi, Phys. Rev. B 98, 041104(R) (2018).ADSCrossRefGoogle Scholar
  4. 4.
    L. Zhang, W. Yu, J.-Y. Ou, Q. Wang, X. Cai, B. Wang, X. Li, R. Zhao, and Y. Liu, Phys. Rev. B 98, 075434 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    Ch. Park, S. Wng Kim, and M. Yoon, Phys. Rev. Lett. 120, 026401 (2018).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Zhang, H. Wang, Y. Wang, L. Zhang, and Y. Ma, Phys. Rev. X 7, 019903 (2017).Google Scholar
  7. 7.
    K. Lee, S. W. Kim, Y. Toda, S. Matsuishi, and H. Hosono, Nature (London, U.K.) 494, 336 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    A. Walsh and D. O. Scanlon, J. Mater. Chem. C 1, 3525 (2013).CrossRefGoogle Scholar
  9. 9.
    U. Steinbrenner, P. Adler, W. Holle, and A. Simon, J. Phys. Chem. Solids 59, 1527 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    D. H. Gregory, A. Bowman, C. F. Baker, and D. P. Weston, J. Mater. Chem. 10, 1635 (2000).CrossRefGoogle Scholar
  11. 11.
    C. M. Fang, G. A. de Wijs, R. A. Groot, M. T. Hintzen, and G. de With, Chem. Mater. 12, 1847 (2000).CrossRefGoogle Scholar
  12. 12.
    S. Guan, S. A. Yang, L. Zhu, J. Hu, and Y. Yao, arXiv: 1502.02321.Google Scholar
  13. 13.
    C. Hartwigsen, S. Godecker, and J. Hutter, Phys. Rev. B 58, 3641 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    E. T. Keve and A. C. Skapski, Chem. Commun. 22, 829 (1966).Google Scholar
  16. 16.
    E. T. Keve and A. C. Skapski, Inorg. Chem. 7, 1757 (1968).CrossRefGoogle Scholar
  17. 17.
    C. F. Baker, M. G. Barker, and A. J. Blake, Acta Crystallogr. E57, i6 (2001).Google Scholar
  18. 18.
    S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    G. M. Eliashberg, Sov. Phys. JETP 11, 696 (1960).Google Scholar
  20. 20.
    P. B. Allen, Phys. Rev. B 17, 3725 (1978).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Y. Savrasov and D. Y. Savrasov, Phys. Rev. B 54, 16487 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • B. N. Mavrin
    • 1
  • M. E. Perminova
    • 1
  • Yu. E. Lozovik
    • 1
    • 2
    • 3
    Email author
  1. 1.Institute of SpectroscopyRussian Academy of SciencesTroitsk, MoscowRussia
  2. 2.Moscow Institute of Electronics and MathematicsNational Research University Higher School of EconomicsMoscowRussia
  3. 3.All-Russia Research Institute of Automatics (VNIIA)MoscowRussia

Personalised recommendations