JETP Letters

, Volume 109, Issue 7, pp 441–448 | Cite as

On the Dust Structures and Chain Reactions Induced over the Regolith by Gyrotron Radiation

  • N. N. SkvortsovaEmail author
  • S. A. Maiorov
  • D. V. Malakhov
  • V. D. Stepakhin
  • E. A. Obraztsova
  • A. I. Kenzhebekova
  • O. N. Shishilov
Plasma, Hydro- and Gas Dynamics


Dust structures formed in exothermic chain plasma chemical processes initiated by pulsed gyrotron radiation in mixtures of metal and dielectric powders are studied. The composition of the powder mixture corresponds to the composition of the lunar regolith. Experiments at the energy of the gyrotron microwave pulse of 1–3 kJ and a pulse duration of 1.5–4 ms reveal an explosive process caused by the Coulomb repulsion of charged particles from the surface of the regolith into the reactor volume. The explosion is followed by the development of chain self-propagating high-temperature synthesis reactions. During these reactions lasting for tens of seconds, the suspension of dust particles rises tens of centimeters above the powder surface. The energy release is more than two orders of magnitude higher than the energy of initiation of a chain reaction. Regolith spheroids with diameters from 1 to 1000 µm precipitate on the side surfaces of the reactor. An analogy of the possible contribution of the Coulomb repulsion between charged particles and plasma exothermic processes to the dispersion of regolith dust when the Moon surface is bombarded by micrometeorites is considered.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. N. Skvortsova, D. V. Malakhov, V. D. Stepakhin, S.A. Maiorov, G. M. Batanov, V. D. Borozosekov, E. M. Konchekov, L. V. Kolik, A. A. Letunov, E. A. Obraztsova, A. E. Petrov, D. O. Pozdnyakov, K. A. Sarksyan, A. A. Sorokin, G. V. Ukryukov, and N. K. Kharchev, JETP Lett. 106, 262 (2017)].CrossRefGoogle Scholar
  2. 2.
    G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, et al., J. Nanoelectron. Optoelectron. 8, 58 (2013).CrossRefGoogle Scholar
  3. 3.
    Comprehensive Chemical Kinetics. Kinetics of Multistep Reactions, 2nd ed., Ed. by F. G. Helfferich (Elsevier, Amsterdam, 2004), Vol. 40, Chap. 10, p. 309.Google Scholar
  4. 4.
    N. N. Skvortsova, N. S. Akhmadullina, G. M. Batanov, V. D. Borzosekov, L. V. Kolik, E. M. Konchekov, N. K. Kharchev, A. A. Letunov, D. V. Malakhov, E. A. Obraztsova, A. E. Petrov, K. A. Sarksian, V. D. Stepakhin, and O. N. Shishilov, EPJ Web of Conf. 149, 02016 (2017).CrossRefGoogle Scholar
  5. 5.
    N. N. Skvortsova, V. D. Stepakhin, D. V. Malakhov, et al., Radiophys. Quantum Electron. 58, 701 (2016).CrossRefGoogle Scholar
  6. 6.
    N. S. Akhmadullina, N. N. Skvortsova, E. A. Obraztsova, V. D. Stepakhin, E. M. Konchekov, Yu. F. Kargin, and O. N. Shishilov, J. Phys.: Conf. Ser. 941, 012034 (2017).Google Scholar
  7. 7.
    J. J. Rennilson and D. R. Criswell, Moon 10, 121 (1974).CrossRefGoogle Scholar
  8. 8.
    O. E. Berg, H. Wolf, and J. Rhee, Lect. Notes Phys. 48, 233 (1976).CrossRefGoogle Scholar
  9. 9.
    K. P. Florenskii, A. T. Bazilevskii, and O. V. Nikolaeva, Lunar Soil: Properties and Analogues (Inst. Geokhim. Anal. Khim. im. V.I. Vernadskogo, Akad. Nauk SSSR, Moscow, 1975) [in Russian].Google Scholar
  10. 10.
    O. R. Walton, Scientific Report of NASA No. CR-2007-214685 (NASA, Washington, DC, 2007).Google Scholar
  11. 11.
    N. D. Semkin and A. S. Vidmanov, Vestn. Samar. Aerokosm. Univ. 40, 164 (2013).Google Scholar
  12. 12.
    E. A. Lisin, V. P. Tarakanov, O. F. Petrov, S. I. Popel’, G. G. Dol’nikov, A. V. Zakharov, L. M. Zelenyi, and V. E. Fortov, JETP Lett. 98, 664 (2013).CrossRefGoogle Scholar
  13. 13.
    S. I. Popel, A. P. Golub’, E. A. Lisin, Yu. N. Izvekova, B. Atamaniuk, G. G. Dol’nikov, A. V. Zakharov, and L. M. Zelenyi, JETP Lett. 103, 563 (2016).CrossRefGoogle Scholar
  14. 14.
    S. I. Popel, A. P. Golub’, A. V. Zakharov, L. M. Zelenyi, A. A. Berezhnoy, E. S. Zubko, M. Iten, R. Lena, S. Sposetti, Yu. I. Velikodsky, A. A. Tereshchenko, and B. Atamaniuk, JETP Lett. 108, 356 (2018).CrossRefGoogle Scholar
  15. 15.
  16. 16.
    E. H. Cardiff, B. R. Pomeroy, I. S. Banks, and A. Benz, AIP Conf. Proc. 880, 846 (2007).CrossRefGoogle Scholar
  17. 17.
    N. K. Kharchev, G. M. Batanov, L. V. Kolik, D. V. Malakhov, A. Y. Petrov, K. A. Sarksyan, N. N. Skvortsova, V. D. Stepakhin, V. I. Belousov, S. A. Malygin, and Y. M. Tai, Rev. Sci. Instrum. 84, 013507 (2013).CrossRefGoogle Scholar
  18. 18.
    N. S. Akhmadullina, N. N. Skvortsova, E. A. Obraztsova, V. D. Stepakhin, E. M. Konchekov, A. A. Letunov, A. A. Konovalov, Yu. F. Kargin, and O. N. Shishilov, Chem. Phys. 516, 63 (2019).CrossRefGoogle Scholar
  19. 19.
    T. Antonova, C.-R. Du, A. V. Ivlev, B. M. Annaratone, L.-J. Hou, R. Kompaneets, H. M. Thomas, and G. E. Morfill, Phys. Plasmas 19, 093709 (2012).CrossRefGoogle Scholar
  20. 20.
    A. S. Sokolov, D. V. Malakhov, and N. N. Skvortsova, Inzhen. Fiz. 12, 03 (2018).Google Scholar
  21. 21.
    Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Nauka, Moscow, 1977).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • N. N. Skvortsova
    • 1
    • 2
    • 3
    Email author
  • S. A. Maiorov
    • 1
    • 6
    • 7
  • D. V. Malakhov
    • 1
    • 2
    • 4
  • V. D. Stepakhin
    • 1
    • 4
  • E. A. Obraztsova
    • 5
  • A. I. Kenzhebekova
    • 7
  • O. N. Shishilov
    • 2
  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Technological University (MIREA)MoscowRussia
  3. 3.Moscow Engineering Physics InstituteNational Research Nuclear University MEPhIMoscowRussia
  4. 4.Pirogov Russian National Research Medical UniversityMoscowRussia
  5. 5.Shemyakin—Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  6. 6.Joint Institute of High TemperaturesRussian Academy of SciencesMoscowRussia
  7. 7.Research Institute of Experimental and Theoretical PhysicsAl-Farabi State University of KazakhstanAlmatyKazakhstan

Personalised recommendations