Advertisement

JETP Letters

, Volume 109, Issue 7, pp 490–493 | Cite as

On Nonstationary Inhomogeneities of the Nonlinear Klein—Gordon Equation

  • R. K. SalimovEmail author
Nonlinear Phenomena
  • 5 Downloads

Abstract

A system consisting of a point material particle and a field described by the nonlinear Klein-Gordon equation has been considered. The particle produces an inhomogeneity of the field and interacts with the field. It has been shown that this system including relativistic effects sometimes does not allow a stable energy minimum at zero velocity. Such a behavior is interesting for the construction of soliton models of particles with a nonzero characteristic angular momentum or soliton models of particles with an oscillation mass.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Encyclopedia of Nonlinear Science, Ed. by A. Scott (Routledge, New York, 2004).zbMATHGoogle Scholar
  2. 2.
    X. Jiang, Z. Fan, Z. Chen, W. Pang, and Y. Li, Phys. Rev. A 93, 023633 (2016).CrossRefGoogle Scholar
  3. 3.
    B. A. Malomed, Phys. J. Spec. Top. 225, 2507 (2016).CrossRefGoogle Scholar
  4. 4.
    G. Fodor, P. Forgacs, Z. Horvath, and A. Lukacs, Phys. Rev. D 78, 025003 (2008).CrossRefGoogle Scholar
  5. 5.
    J. Cuevas, P. G. Kevrekidis, B. A. Malomed, P. Dyke, and R. G. Hulet, New J. Phys. 15, 063006 (2013).MathSciNetCrossRefGoogle Scholar
  6. 6.
    E. G. Ekomasov and R. K. Salimov, JETP Lett. 102, 122 (2015).CrossRefGoogle Scholar
  7. 7.
    L. A. Takhtadzhan and L. D. Faddeev, Sov. J. Theor. Math. Phys. 21, 1046 (1974).CrossRefGoogle Scholar
  8. 8.
    M. A. Shamsutdinov, V. N. Nazarov, and I. Yu. Lomakina, Ferro- and Antiferromagnetodynamics. Nonlinear Oscillations, Waves and Solitons (Nauka, Moscow, 2009) [in Russian].Google Scholar
  9. 9.
    J. Cuevas-Maraver, P. G. Kevrekidis, and F. Williams, Physics 10, 263 (2014).Google Scholar
  10. 10.
    T. Dauxois and M. Peyrard, Physics of Solitons (Cambridge Univ. Press, New York, 2010).zbMATHGoogle Scholar
  11. 11.
    A. Wazwaz, J. Appl. Math. Inform. 30, 925 (2012).MathSciNetGoogle Scholar
  12. 12.
    S. Johnson, P. Suarez, and A. Biswas, Math. Math. Phys. 52, 98 (2012).CrossRefGoogle Scholar
  13. 13.
    E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, Theor. Math. Phys. 158, 313 (2009).CrossRefGoogle Scholar
  14. 14.
    M. Qing, H. Bin, R. Weiguo, and L. Yao, International Journal of Computer Mathematics 87, 591 (2010).MathSciNetCrossRefGoogle Scholar
  15. 15.
    E. G. Ekomasov and R. K. Salimov, Comput. Math. Math. Phys. 56, 1604 (2016).MathSciNetCrossRefGoogle Scholar
  16. 16.
    I. L. Bogoluvskii and V. G. Makhankov, JETP Lett. 24, 12 (1976).Google Scholar
  17. 17.
    E. G. Ekomasov, A. M. Gumerov, and R. V. Kudryavtsev, JETP Lett. 101, 835 (2015).CrossRefGoogle Scholar
  18. 18.
    E. G. Ekomasov, R. R. Murtazin, and V. N. Nazarov, J. Magn. Magn. Mater. 385, 217 (2015).CrossRefGoogle Scholar
  19. 19.
    E. G. Ekomasov, R. R. Murtazin, and Sh. A. Azamatov, Phys. Solid State 54, 1584 (2012).CrossRefGoogle Scholar
  20. 20.
    E. G. Ekomasov, Sh. A. Azamatov, R. R. Murtazin, A. M. Gumerov, and A. D. Davletshina, Bull. Russ. Acad. Sci.: Phys. 74, 1459 (2010).CrossRefGoogle Scholar
  21. 21.
    T. B. Shapaeva, R. R. Murtazin, and E. G. Ekomasov, Bull. Russ. Acad. Sci.: Phys. 78, 88 (2014).CrossRefGoogle Scholar
  22. 22.
    E. G. Ekomasov, A. M. Gumerov, and R. R. Murtazin, Math. Meth. Appl. Sci. 40, 6178 (2016).CrossRefGoogle Scholar
  23. 23.
    E. G. Ekomasov, R. R. Murtazin, Sh. A. Azamatov, and A. E. Ekomasov, Phys. Met. Metallogr. 112, 213 (2011).CrossRefGoogle Scholar
  24. 24.
    E. G. Ekomasov, Sh. A. Azamatov, and R. R. Murtazin, Phys. Met. Metallogr. 108, 532 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Bashkir State UniversityUfaRussia

Personalised recommendations