Advertisement

JETP Letters

, Volume 109, Issue 7, pp 432–436 | Cite as

Filamentation of an Ultrashort Laser Pulse in a Medium with Artificial Nonlinearity

  • S. I. KudryashovEmail author
  • A. A. Samokhvalov
  • E. I. Ageev
  • V. P. Veiko
Optics and Laser Physics
  • 2 Downloads

Abstract

The introduction of a small amount of subwavelength gold nanoparticles (extinction coefficient ∼0.01–1 cm−1) to water allows the efficient control of filamentation owing to nonlinear dissipative losses of a primary ultrashort pump laser pulse and secondary broadband radiation (supercontinuum), because the intrinsic extinction coefficient in the multiple filamentation regime is below 0.04 cm−1. Optical emission and photoacoustic spectroscopy studies have shown that an increase in losses in a colloidal solution sublinearly increases the power of an ultrashort laser pulse for the nonlinear generation of supercontinuum with the same intensity, and it also increases the filamentation threshold near the supercontinuum generation threshold. At the same time, supercontinuum emission is significantly enhanced in the region of plasmon resonance of nanoparticles against the background of broadband nonlinear absorption. The results demonstrate new possibilities of controlling the nonlinear optical characteristics of media for the generation and filamentation of ultrashort light pulses in various spectral ranges.

References

  1. 1.
    J. H. Marburger, Prog. Quantum Electron. 4, 35 (1975).CrossRefGoogle Scholar
  2. 2.
    V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, Quantum Electron. 39, 205 (2009).CrossRefGoogle Scholar
  3. 3.
    D. E. Shipilo, D. V. Mokrousova, N. A. Panov, G. E. Rizaev, A. V. Shalova, E. S. Sunchugasheva, A. A. Ionin, A. Couairon, L. V. Seleznev, and O. G. Kosareva, J. Opt. Soc. Am. B 36, A66 (2019).CrossRefGoogle Scholar
  4. 4.
    M. Manousidaki, V. Y. Fedorov, D. G. Papazoglou, M. Farsari, and S. Tzortzakis, Opt. Lett. 43, 1063 (2018).CrossRefGoogle Scholar
  5. 5.
    J. A. Dharmadhikari, G. Steinmeyer, G. Gopakumar, D. Mathur, and A. K. Dharmadhikari, Opt. Lett. 41, 3475 (2016).CrossRefGoogle Scholar
  6. 6.
    C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, Appl. Phys. Lett. 90, 181119 (2007).CrossRefGoogle Scholar
  7. 7.
    R. Driben, A. Husakou, and J. Herrmann, Opt. Lett. 34, 2132 (2009).CrossRefGoogle Scholar
  8. 8.
    P. Vasa, M. Singh, R. Bernard, A. K. Dharmadhikari, J. A. Dharmadhikari, and D. Mathur, Appl. Phys. Lett. 103, 111109 (2013).CrossRefGoogle Scholar
  9. 9.
    J. Philip, C. D’Amico, G. Cheriaux, A. Couairon, B. Prade, and A. Mysyrowicz, Phys. Rev. Lett. 95, 163901 (2005).CrossRefGoogle Scholar
  10. 10.
    V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (Nauka, Moscow, 1991; AIP, New York, 1993).Google Scholar
  11. 11.
    A. Couairon and A. Myzyrowicz, Phys. Rep. 441, 47 (2007).CrossRefGoogle Scholar
  12. 12.
    A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, JETP Lett. 90, 423 (2009).CrossRefGoogle Scholar
  13. 13.
    V. Mizeikis, S. Juodkazis, T. Balciunas, H. Misawa, S. I. Kudryashov, A. A. Ionin, and V. D. Zvorykin, J. Appl. Phys. 105, 123106 (2009).CrossRefGoogle Scholar
  14. 14.
    E. V. Golosov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, J. Exp. Theor. Phys. 113, 14 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • S. I. Kudryashov
    • 1
    • 2
    Email author
  • A. A. Samokhvalov
    • 1
  • E. I. Ageev
    • 1
  • V. P. Veiko
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations