Advertisement

JETP Letters

, Volume 109, Issue 7, pp 478–481 | Cite as

Toroidal Configuration of a Cholesteric Liquid Crystal in Droplets with Homeotropic Anchoring

  • M. N. KrakhalevEmail author
  • V. Yu. Rudyak
  • A. P. Gardymova
  • V. Ya. Zyryanov
Condensed Matter

Abstract

Orientational structures formed in cholesteric droplets with homeotropic surface anchoring have been studied by means of polarization optical microscopy and computer simulations. It has been found that, when the ratio of the size of droplets to the pitch of a cholesteric helix ranges from 1.4 to 2.9, an axisymmetric toroidal cholesteric structure is formed with a topological linear defect in the form of an equatorially located surface ring. The features of the toroidal structure in cholesteric droplets and their optical textures for various observation schemes are examined in detail.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor and Francis, Boca Raton, 2005).CrossRefGoogle Scholar
  2. 2.
    G. E. Volovik, JETP Lett. 28, 59 (1978).Google Scholar
  3. 3.
    M. Kleman and O. D. Lavrentovich, Soft Matter Physics: An Introduction (Springer, New York, 2003).Google Scholar
  4. 4.
    H.-S. Kitzerow, Liq. Cryst. 16, 1 (1994).CrossRefGoogle Scholar
  5. 5.
    Y. Geng, J.-H. Jang, K.-G. Noh, J. Noh, J. P. F. Lagerwall, and S.-Y. Park, Adv. Opt. Mater. 6, 1700923 (2018).CrossRefGoogle Scholar
  6. 6.
    M. Humar and I. Musevic, Opt. Express 18, 26995 (2010).CrossRefGoogle Scholar
  7. 7.
    G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, Adv. Mater. 23, 5773 (2011).CrossRefGoogle Scholar
  8. 8.
    G. Tkachenko and E. Brasselet, Nat. Commun. 5, 3577 (2014).CrossRefGoogle Scholar
  9. 9.
    J. Yoshioka, F. Ito, Y. Suzuki, H. Takahashi, H. Takizawa, and Y. Tabe, Soft Matter 10, 5869 (2014).CrossRefGoogle Scholar
  10. 10.
    J. Yoshioka and F. Araoka, Nat. Commun. 9, 432 (2018).CrossRefGoogle Scholar
  11. 11.
    T. Yamamoto and M. Sano, Soft Matter 13, 3328 (2017).CrossRefGoogle Scholar
  12. 12.
    F. Xu and P. P. Crooker, Phys. Rev. E 56, 6853 (1997).CrossRefGoogle Scholar
  13. 13.
    J. Bezic and S. Žumer, Liq. Cryst. 11, 593 (1992).CrossRefGoogle Scholar
  14. 14.
    Y. Zhou, E. Bukusoglu, J. A. Martínez-González, M. Rahimi, T. F. Roberts, R. Zhang, X. Wang, N. L. Abbott, and J. J. de Pablo, ACS Nano 10, 6484 (2016).CrossRefGoogle Scholar
  15. 15.
    Y. Bouligand and F. Livolant, J. Phys. (Paris) 45, 1899 (1984).CrossRefGoogle Scholar
  16. 16.
    S. Candau, P. le Roy, and F. Debeauvais, Mol. Cryst. Liq. Cryst. 23, 283 (1973).CrossRefGoogle Scholar
  17. 17.
    D. Seč, T. Porenta, M. Ravnik, and S. Žumer, Soft Matter 8, 11982 (2012).CrossRefGoogle Scholar
  18. 18.
    A. Darmon, M. Benzaquen, S. Copar, O. Dauchot, and T. Lopez-Leon, Soft Matter 12, 9280 (2016).CrossRefGoogle Scholar
  19. 19.
    G. Posnjak, S. Čopar, and I. Musevic, Sci. Rep. 6, 26361 (2016).CrossRefGoogle Scholar
  20. 20.
    G. Posnjak, S. Čopar, and I. Musevic, Nat. Commun. 8, 14594 (2017).CrossRefGoogle Scholar
  21. 21.
    H.-S. Kitzerow and P. P. Crooker, Liq. Cryst. 13, 31 (1993).CrossRefGoogle Scholar
  22. 22.
    M. N. Krakhalev, A. P. Gardymova, O. O. Prishchepa, V. Yu. Rudyak, A. V. Emelyanenko, J.-H. Liu, and V. Ya. Zyryanov, Sci. Rep. 7, 14582 (2017).CrossRefGoogle Scholar
  23. 23.
    D. Seč, S. Čopar, and S. Žumer, Nat. Commun. 5, 4057 (2014).CrossRefGoogle Scholar
  24. 24.
    J. Pierron, V. Tournier-Lasserve, P. Sopena, A. Boudet, P. Sixou, and M. Mitov, J. Phys. II (France) 5, 1635 (1995).CrossRefGoogle Scholar
  25. 25.
    M. N. Krakhalev, A. P. Gardymova, A. V. Emel’yanenko, Jui-Hsiang Liu, and V. Ya. Zyryanov, JETP Lett. 105, 51 (2017).CrossRefGoogle Scholar
  26. 26.
    P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, Singapore, 1995).CrossRefGoogle Scholar
  27. 27.
    V. Yu. Rudyak, A. V. Emelyanenko, and V. A. Loiko, Phys. Rev. E 88, 052501 (2013).CrossRefGoogle Scholar
  28. 28.
    T. Orlova, S. J. Aßhoff, T. Yamaguchi, N. Katsonis, and E. Brasselet, Nat. Commun. 6, 8603 (2015).CrossRefGoogle Scholar
  29. 29.
    P. J. Ackerman and I. I. Smalyukh, Phys. Rev. X 7, 011006 (2017).Google Scholar
  30. 30.
    R. Ondris-Crawford, E. P. Boyko, B. G. Wagner, J. H. Erdmann, S. Zumer, and J. W. Doane, J. Appl. Phys. 69, 6380 (1991).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • M. N. Krakhalev
    • 1
    • 2
    Email author
  • V. Yu. Rudyak
    • 3
  • A. P. Gardymova
    • 2
  • V. Ya. Zyryanov
    • 1
  1. 1.Kirensky Institute of Physics, Federal Research Center KSC, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Institute of Engineering Physics and Radio ElectronicsSiberian Federal UniversityKrasnoyarskRussia
  3. 3.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations