Advertisement

JETP Letters

, Volume 109, Issue 7, pp 460–464 | Cite as

Relation between the Shear and Dilatational Elastic Energies of Interstitial Defects in Metallic Crystals

  • R. A. KonchakovEmail author
  • A. S. Makarov
  • G. V. Afonin
  • M. A. Kretova
  • N. P. Kobelev
  • V. A. Khonik
Condensed Matter

Abstract

Molecular statics simulation of interstitial defects for four metals with a face-centered cubic lattice has been carried out. The volumes of Voronoi polyhedra are calculated for defect-forming atoms and their nearest environment. These calculations indicate that the ratio of the dilatational to shear contribution to the elastic energy for the most stable split interstitials does not exceed 0.12–0.13. The validity of the same conclusion for dumbbell interstitial defects in metallic glasses is argued.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. G. Wolfer, in Comprehensive Nuclear Materials, Ed. by R. J. M. Konings (Elsevier, Amsterdam, 2012).Google Scholar
  2. 2.
    A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids (Academic, New York, London, 1972).Google Scholar
  3. 3.
    G. Gottstein, Physical Foundations of Materials Science (Springer, Berlin, Heidelberg, 2004; BINOM. Labor. Znanii, Moscow, 2014).CrossRefGoogle Scholar
  4. 4.
    P. H. Dederichs, C. Lehman, H. R. Schober, A. Scholz, and R. Zeller, J. Nucl. Mater. 69–70, 176 (1978).CrossRefGoogle Scholar
  5. 5.
    A. V. Granato, Phys. Rev. Lett. 68, 974 (1992).CrossRefGoogle Scholar
  6. 6.
    P. Varotsos and K. Alexopoulos, Phys. Rev. B 15, 2348 (1977).CrossRefGoogle Scholar
  7. 7.
    P. Varotsos, W. Ludwig, and K. Alexopoulos, Phys. Rev. B 18, 2683 (1978).CrossRefGoogle Scholar
  8. 8.
    P. Varotsos and K. Alexopoulos, Thermodynamics of Point Defects and Their Relation with the Bulk Properties (North-Holland, Amsterdam, 1986).Google Scholar
  9. 9.
    P. Varotsos, J. Appl. Phys. 101, 123503 (2007).CrossRefGoogle Scholar
  10. 10.
    B. Zhang, X. Wu, J. Xu, and R. Zhou, J. Appl. Phys. 108, 053505 (2010).CrossRefGoogle Scholar
  11. 11.
    S. Zener, J. Appl. Phys. 22, 372 (1951).CrossRefGoogle Scholar
  12. 12.
    J. Holder and A. V. Granato, Phys. Rev. 182, 729 (1969).CrossRefGoogle Scholar
  13. 13.
    N. P. Kobelev and V. A. Khonik, J. Exp. Theor. Phys. 126, 340 (2018).CrossRefGoogle Scholar
  14. 14.
    A. V. Granato, Eur. J. Phys. B 87, 18 (2014).CrossRefGoogle Scholar
  15. 15.
    E. V. Safonova, Yu. P. Mitrofanov, R. A. Konchakov, A. Yu. Vinogradov, N. P. Kobelev, and V. A. Khonik, J. Phys.: Condens. Matter 28, 215401 (2016).Google Scholar
  16. 16.
    E. V. Goncharova, A. S. Makarov, R. A. Konchakov, N. P. Kobelev, and V. A. Khonik, JETP Lett. 106, 35 (2017).CrossRefGoogle Scholar
  17. 17.
    K. Nordlund, Y. Ashkenazy, R. S. Averback, and A. V. Granato, Europhys. Lett. 71, 625 (2005).CrossRefGoogle Scholar
  18. 18.
    R. A. Konchakov, N. P. Kobelev, V. A. Khonik, and A. S. Makarov, Phys. Solid State 58, 215 (2016).CrossRefGoogle Scholar
  19. 19.
    E. V. Goncharova, R. A. Konchakov, A. S. Makarov, N. P. Kobelev, and V. A. Khonik, J. Phys.: Condens. Matter 29, 305701 (2017).Google Scholar
  20. 20.
    V. A. Khonik, Chin. Phys. B 26, 016401 (2017).CrossRefGoogle Scholar
  21. 21.
    Y. P. Mitrofanov, D. P. Wang, A. S. Makarov, W. H. Wang, and V. A. Khonik, Sci. Rep. 6, 23026 (2016).CrossRefGoogle Scholar
  22. 22.
    J. C. Dyre, Phys. Rev. B 75, 092102 (2007).CrossRefGoogle Scholar
  23. 23.
    J. Plimpton, J. Comp. Phys. 117, 1 (1995).CrossRefGoogle Scholar
  24. 24.
    Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999).CrossRefGoogle Scholar
  25. 25.
    H. W. Sheng, M. J. Kramer, A. Cadien, T. Fujita, and M. W. Chen, Phys. Rev. B 83, 134118 (2011).CrossRefGoogle Scholar
  26. 26.
    Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, Phys. Rev. B 63, 224106 (2001).CrossRefGoogle Scholar
  27. 27.
    S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 37, 10378 (1988).CrossRefGoogle Scholar
  28. 28.
    R. Meister and L. Peselnick, J. Appl. Phys. 37, 4121 (1966).CrossRefGoogle Scholar
  29. 29.
    V. A. Khonik and N. P. Kobelev, J. Appl. Phys. 115, 093510 (2014).CrossRefGoogle Scholar
  30. 30.
    G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT, Cambridge, MA, 1977).Google Scholar
  31. 31.
    M. A. Shtremel, Strength of Alloys. Part 1. Lattice Defects (MISIS, Moscow, 1990) [in Russian].Google Scholar
  32. 32.
    W. H. Wang, Prog. Mater Sci. 57, 487 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • R. A. Konchakov
    • 1
    Email author
  • A. S. Makarov
    • 1
  • G. V. Afonin
    • 1
  • M. A. Kretova
    • 1
  • N. P. Kobelev
    • 2
  • V. A. Khonik
    • 1
  1. 1.Voronezh State Pedagogical UniversityVoronezhRussia
  2. 2.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations