Advertisement

JETP Letters

, Volume 109, Issue 7, pp 482–489 | Cite as

Tunneling in Graphene/h-BN/Graphene Heterostructures through Zero-Dimensional Levels of Defects in h-BN and Their Use as Probes to Measure the Density of States of Graphene

  • Yu. N. Khanin
  • E. E. VdovinEmail author
  • M. V. Grigor’ev
  • O. Makarovsky
  • Manal Alhazmi
  • S. V. Morozov
  • A. Mishchenko
  • K. S. Novoselov
Condensed Matter
  • 1 Downloads

Abstract

The evolution of the manifestation of levels of defects in h-BN in tunneling through graphene/h-BN/graphene heterostructures with various degrees of perfection, from completely defectless to those with several tens of levels in the band gap of h-BN, has been studied. It has been shown that the behavior of these levels is related to the motion of Dirac points and the chemical potentials of graphene layers at change in the bias and gate voltages, which is described by the electrostatic model of an ideal defectless heterostructure. The density of states of graphene in a magnetic field has been studied by its probing by the level of a single defect with a sensitivity allowing the detection of splitting of the zeroth Landau level caused by the lifting of the spin and valley degeneracy already at B ∼ 4 T.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Chandni, K. Watanabe, T. Taniguchi, and J. P. Eisenstein, Nano Lett. 15 (11), 7329 (2015).CrossRefGoogle Scholar
  2. 2.
    U. Chandni, K. Watanabe, T. Taniguchi, and J. P. Eisenstein, Nano Lett. 16 (12), 7982 (2016).CrossRefGoogle Scholar
  3. 3.
    Y. Liu, Zh. Tan, M. Kumar, and T. S. Abhilash, APL Mater. 6, 091102 (2018).CrossRefGoogle Scholar
  4. 4.
    A. Ranjan, F. M. Puglisi, N. Raghavan, S. J. O’Shea, K. Shubhakar, P. Pavan, A. Padovani, L. Larcher, and K. L. Pey, Appl. Phys. Lett. 112, 133505 (2018).CrossRefGoogle Scholar
  5. 5.
    M. T. Greenaway, E. E. Vdovin, D. Ghazaryan, A. Misra, A. Mishchenko, Y. Cao, Z. Wang, J. R. Wallbank, M. Holwill, Yu. N. Khanin, S. V. Morozov, K. Watanabe, T. Taniguchi, O. Makarovsky, T. M. Fromhold, et al., Commun. Phys. 1, 94 (2018).CrossRefGoogle Scholar
  6. 6.
    G. Kim, S.-S. Kim, J. Jeon, et al., Nat. Commun. 10, 230 (2019).CrossRefGoogle Scholar
  7. 7.
    T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, Nat. Nanotechnol. 11, 37 (2016).CrossRefGoogle Scholar
  8. 8.
    I. Aharonovich, D. Englund, and M. Toth, Nat. Photon. 10, 631 (2016).CrossRefGoogle Scholar
  9. 9.
    N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatté, and G. D. Fuchs, Nano Lett. 16, 6052 (2016).CrossRefGoogle Scholar
  10. 10.
    M. R. Deshpande, J. W. Sleight, M. A. Reed, R. G. Wheeler, and R. J. Matyi, Phys. Rev. Lett. 76, 1328 (1996).CrossRefGoogle Scholar
  11. 11.
    V. V. Kuznetsov, A. K. Savchenko, D. R. Mace, E. H. Linfield, and D. A. Ritchie, Phys. Rev. B 56, R15533 (1997).CrossRefGoogle Scholar
  12. 12.
    A. K. Geim, P. C. Main, N. La Scala, Jr., L. Eaves, T. J. Foster, P. H. Beton, J. W. Sakai, F. W. Sheard, M. Henini, G. Hill, and M. A. Pate, Phys. Rev. Lett. 72, 2061 (1994).CrossRefGoogle Scholar
  13. 13.
    P. C. Main, A. S. G. Thornton, R. J. A. Hill, S. T. Stoddart, T. Ihn, L. Eaves, K. A. Benedict, and M. Henini, Phys. Rev. Lett. 84, 729 (2000).CrossRefGoogle Scholar
  14. 14.
    I. Hapke-Wurst, U. Zeitler, H. Frahm, A. G. M. Jansen, R. J. Haug, and K. Pierz, Phys. Rev. B 62, 12621 (2000).CrossRefGoogle Scholar
  15. 15.
    Yu. N. Khanin and E. E. Vdovin, JETP Lett. 81, 267 (2005).CrossRefGoogle Scholar
  16. 16.
    E. E. Vdovin, Yu. N. Khanin, L. Eaves, M. Henini, and G. Hill, Phys. Rev. B 71, 195320 (2005).CrossRefGoogle Scholar
  17. 17.
    T. Ihn, A. Thornton, I. E. Itskevich, P. H. Beton, P. Martin, P. Moriarti, E. Muller, A. Nogaret, P. S. Main, L. Eaves, and M. Henini, Phys. Usp. 41, 122 (1998).CrossRefGoogle Scholar
  18. 18.
    E. E. Vdovin and Yu. N. Khanin, JETP Lett. 108, 641 (2018).CrossRefGoogle Scholar
  19. 19.
    E. E. Vdovin, A. Mishchenko, M. T. Greenaway, et al., Phys. Rev. Lett. 116, 186603 (2016).CrossRefGoogle Scholar
  20. 20.
    B. Ricco and M. Ya. Azbel, Phys. Rev. B 29, 1970 (1984).CrossRefGoogle Scholar
  21. 21.
    Yu. N. Khanin, E. E. Vdovin, A. Mishchenko, Zh. S. Tu, A. Kozikov, R. V. Gorbachev, and K. S. Novoselov, JETP Lett. 104, 334 (2016).CrossRefGoogle Scholar
  22. 22.
    A. Luican, G. Li, and E. Y. Andrei, Phys. Rev. B 83, 041405 (2011).CrossRefGoogle Scholar
  23. 23.
    J. Gaskell, L. Eaves, K. S. Novoselov, A. Mishchenko, A. K. Geim, T. M. Fromhold, and M. T. Greenaway, Appl. Phys. Lett. 107, 103105 (2015).CrossRefGoogle Scholar
  24. 24.
    M. O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011).CrossRefGoogle Scholar
  25. 25.
    Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 96, 136806 (2006).CrossRefGoogle Scholar
  26. 26.
    G. L. Yu, R. Jalil, B. Belle, et al., Proc. Natl. Acad. Sci. U. S. A. 110 (9), 3282 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • Yu. N. Khanin
    • 1
  • E. E. Vdovin
    • 1
    Email author
  • M. V. Grigor’ev
    • 1
  • O. Makarovsky
    • 2
  • Manal Alhazmi
    • 3
  • S. V. Morozov
    • 1
    • 3
  • A. Mishchenko
    • 3
  • K. S. Novoselov
    • 3
  1. 1.Institute for Problems of Microelectronics Technologies and High-Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.School of Physics and AstronomyUniversity of NottinghamNottinghamUK
  3. 3.School of Physics and AstronomyUniversity of ManchesterManchesterUK

Personalised recommendations