JETP Letters

, Volume 109, Issue 7, pp 472–477 | Cite as

Elastic Properties of Bilayer Graphene Nanostructures with Closed Holes

  • A. A. Artyukh
  • L. A. ChernozatonskiiEmail author
Condensed Matter


The elastic moduli of bilayer graphene nanomeshes, i.e., nanomeshes of bilayer graphene, where layers at the edges of “closed” holes are coupled to each other by a continuous network of sp2-hybridized atoms, have been calculated by ab initio methods. Structures with different configurations of holes in layers with AA, AB, and 30° stackings have been studied. It has been shown that the ultimate tensile strength of the nanomeshes under consideration is higher than that of graphene nanostructures and is comparable with the ultimate tensile strength of bilayer graphene and single-layer carbon nanotubes. A possible application of such strong nanomeshes as nanocontainers for hydrogen storage and other compressed gases has been also discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Kai and W. Junqiao, J. Mater. Res. 31, 832 (2016).CrossRefGoogle Scholar
  2. 2.
    G. Zhao, X. Li, M. Huang, Z. Zhen, Y. Zhong, Q. Chen, X. Zhao, Y. He, R. Hu, T. Yang, R. Zhang, C. Li, J. Kong, J.-B. Xu, R. S. Ruoff, and H. Zhu, Chem. Soc. Rev. 46, 4417 (2017).CrossRefGoogle Scholar
  3. 3.
    P. B. Sorokin and L. A. Chernozatonskii, Phys. Usp. 56, 105 (2013).CrossRefGoogle Scholar
  4. 4.
    L. A. Chernozatonskii, V. A. Demin, and A. A. Artyukh, JETP Lett. 99, 309 (2014).CrossRefGoogle Scholar
  5. 5.
    D. G. Kvashnin, P. Vancso, L. Yu. Antipina, G. I. Mark, L. P. Biro, P. B. Sorokin, and L. A. Chernozatonskii, Nano Res. 8, 1250 (2015).CrossRefGoogle Scholar
  6. 6.
    L. A. Chernozatonskii, V. A. Demin, S. V. Erohin, D. G. Kvashnin, A. V. Krasheninnikov, and P. B. Sorokin, J. Phys.: Conf. Ser. 1092, 012018 (2018).Google Scholar
  7. 7.
    N. A. Nebogatikova, I. V. Antonova, S. V. Erohin, D. G. Kvashnin, A. Olejniczak, V. A. Volodin, A. V. Skuratov, A. V. Krasheninnikov, P. B. Sorokin, and L. A. Chernozatonskii, Nanoscale 10, 14499 (2018).CrossRefGoogle Scholar
  8. 8.
    J. Oh, H. Yoo, J. Choi, J. Y. Kim, D. S. Lee, M. J. Kim, J.-C. Lee, W. N. Kim, J. C. Grossman, J. H. Park, S.-S. Lee, H. Kim, and J. G. Son, Nano Energy 35, 26 (2017).CrossRefGoogle Scholar
  9. 9.
    J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejón, and D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).Google Scholar
  10. 10.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).MathSciNetCrossRefGoogle Scholar
  11. 11.
    J. D. Gale and A. L. Rohl, Mol. Simul. 29, 291 (2003).CrossRefGoogle Scholar
  12. 12.
    D. W. Brenner, Phys. Rev. B 42, 15 (1990).CrossRefGoogle Scholar
  13. 13.
    J. E. Jones, Proc. R. Soc. London, Ser. A 106, 463 (1924).CrossRefGoogle Scholar
  14. 14.
    B. Ni, K.-H. Lee, and S. B. Sinnott, J. Phys.: Condens. Matter 16, 7261 (2004).Google Scholar
  15. 15.
    A. V. Petukhov and A. Fasolino, Phys. Status Solidi A 181, 109 (2000).CrossRefGoogle Scholar
  16. 16.
    A. Favat, A. Micheletti, S. Ryu, and N. M. Pugno, Comput. Phys. Commun. 207, 426 (2016).CrossRefGoogle Scholar
  17. 17.
    A. Yu. Belov and H. U. Jager, Surf. Coat. Technol. 151–152, 128 (2002).CrossRefGoogle Scholar
  18. 18.
    T. H. Fang, W. J. Chang, and G. C. Yang, Digest J. Nanomater. Biostruct. 9, 1207 (2014).Google Scholar
  19. 19.
    C. Carpenter, A. M. Christmann, L. Hu, I. Fampiou, A. R. Muniz, A. Ramasubramaniam, and D. Maroudas, Appl. Phys. Lett. 104, 141911 (2014).CrossRefGoogle Scholar
  20. 20.
    J.-U. Lee, D. Yoon, and H. Cheong, Nano Lett. 12, 4444 (2012).CrossRefGoogle Scholar
  21. 21.
    Y. Y. Chang, C. M. Wang, Y. Cheng, and Y. Xiang, Carbon 49, 4511 (2011).CrossRefGoogle Scholar
  22. 22.
    C. D. Reddy, S. Rajendran, and K. M. Liew, Nanotechnology 17, 864 (2006).CrossRefGoogle Scholar
  23. 23.
    E. F. Sheka, N. A. Popova, V. A. Popova, E. A. Nikitina, and L. H. Shaymardanova, J. Exp. Theor. Phys. 112, 602 (2011).CrossRefGoogle Scholar
  24. 24.
    T. Dumitrica, M. Hua, and B. I. Yakobson, Proc. Natl. Acad. Sci. U. S. A. 103, 6105 (2006).CrossRefGoogle Scholar
  25. 25.
    L. Pastewka, P. Pou, R. Perez, P. Gumbsch, and M. Moseler, Phys. Rev. B 78, 161402(R) (2008).CrossRefGoogle Scholar
  26. 26.
    S. J. Yang, H. Jung, T. Kim, and C. R. Park, Prog. Nat. Sci.: Mater. Int. 22, 631 (2012).CrossRefGoogle Scholar
  27. 27.
    N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. Castro Neto, and M. F. Crommie, Science (Washington, DC, U. S.) 329, 544 (2010).CrossRefGoogle Scholar
  28. 28.
    C. Liu, Y. Chen, C.-Z. Wu, S.-T. Xu, and H.-M. Cheng, Carbon 48, 452 (2010).CrossRefGoogle Scholar
  29. 29.
    V. Carozo, C. M. Almeida, B. Fragneaud, P. M. Bedé, M. V. O. Moutinho, J. Ribeiro-Soares, N. F. Andrade, A. G. Souza Filho, M. J. S. Matos, B. Wang, M. Terrones, R. B. Capaz, A. Jorio, C. A. Achete, and L. G. Cancado, Phys. Rev. B 88, 085401 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Research School Chemistry and Technology of Polymeric MaterialsPlekhanov Russian University of EconomicsMoscowRussia

Personalised recommendations