Advertisement

To the Intrinsic Magnetism of the Bi1.08Sn0.02Sb0.9Te2S Topological Insulator

  • V. Sakhin
  • E. Kukovitsky
  • A. Kiiamov
  • R. Khasanov
  • Yu. Talanov
  • G. Teitel’baumEmail author
Article
  • 16 Downloads

Abstract

Using Electron Spin Resonance spectroscopy together with the Superconducting Quantum Interference Device magnetometry we found that the intrinsic magnetic moments, originating from the nonmagnetic structural defects of Bi1.08Sn0.02Sb0.9Te2S topological insulator form the superparamagnetic state. It represents an array of nanoscale single domain ferromagnets randomly distributed in the nonmagnetic meda. Their net magnetic polarization in the absence of external magnetic field is completely averaged out. Single domain ferromagnetic particles at elevated temperatures behave magnetically in a manner analogous to the Langevin paramagnetism of moment bearing atoms. The main distinction is that the moment of the particle may be 102−103 times the atomic moment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010); DOI: https://doi.org/10.1103/RevModPhys.82.3045.ADSCrossRefGoogle Scholar
  2. 2.
    J. E. Moore, Nature (London) 464, 194 (2010); doi: 10.1038/nature08916.ADSCrossRefGoogle Scholar
  3. 3.
    X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011); DOI: https://doi.org/10.1103/RevModPhys.83.1057.ADSCrossRefGoogle Scholar
  4. 4.
    Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J.G. Checkelsky, L.A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M. Z. Hasan, N.P. Ong, A. Yazdani, and R. J. Cava, Phys. Rev. B 81, 195203 (2010); DOI: https://doi.org/10.1103/PhysRevB.81.195203.ADSCrossRefGoogle Scholar
  5. 5.
    L. Fu and C. L. Kane, Phys. Rev. Lett. 102, 216403 (2009); https://doi.org/10.1103/PhysRevLett.102.216403.ADSCrossRefGoogle Scholar
  6. 6.
    V. Sakhin, E. Kukovitskii, N. Garif’yanov, Yu. Talanov, and G. Teitel’baum, Journal of Superconductivity and Novel Magnetism 30, 63 (2017); doi: 10.1007/s10948- 016-3801-y.CrossRefGoogle Scholar
  7. 7.
    Yu. Talanov, V. Sakhin, E. Kukovitskii, N. Garif’yanov, and G. Teitel’baum, Appl. Magn. Resonance 48(2), 143 (2017); https://doi.org/10.1007/s00723-016-0853-x.CrossRefGoogle Scholar
  8. 8.
    S. Zimmermann, F. Steckel, C. Hess, H. W. Ji, Y. S. Hor, R. J. Cava, B. Büchner, and V. Kataev, Phys. Rev. B 94, 125205 (2016); DOI: 10.1103/PhysRevB.94.125205.ADSCrossRefGoogle Scholar
  9. 9.
    G. Xiao, Ch. Zhu, Y. Ma, B. Liu, G. Zou, and B. Zou, Angewandte Chemie (International ed. in English) 53, 729 (2014); DOI: 10.1002/anie.201309416.CrossRefGoogle Scholar
  10. 10.
    L. Wang, Y. Yan, L. Zhang, Z. Liao, H. Wu, and D. Yu, Nanoscale 7, 16687 (2015); DOI: 10.1039/C5NR05250E.ADSCrossRefGoogle Scholar
  11. 11.
    V. Sakhin, E. Kukovitskii, N. Garifyanov, R. Khasanov, Yu. Talanov, and G. Teitel’baum, J. Magn. Magn. Mater. 459, 290 (2018); https://doi.org/10.1016/j.jmmm.2017.10.047.ADSCrossRefGoogle Scholar
  12. 12.
    S.K. Kushwaha, I. Pletikosic’, T. Liang, A. Gyenis, S. H. Lapidus, Y. Tian, H. Zhao, K. S. Burch, J. Lin, W. Wang, H. Ji, A. V. Fedorov, A. Yazdani, N.P. Ong, T. Valla, and R. J. Cava, Nat. Commun. 7, 11456 (2016); doi: 10.1038/ncomms11456.ADSCrossRefGoogle Scholar
  13. 13.
    W. Kraus and G. Nolze, J. Appl. Cryst 29, 301 (1996).CrossRefGoogle Scholar
  14. 14.
    X. Guo, X. Jia, K. Jie, H. Sun, Y. Zhang, B. Suna, and H. Ma, Cryst. Eng. Comm. 15, 7236 (2013); DOI: 10.1039/c3ce40780b.CrossRefGoogle Scholar
  15. 15.
    S. Hikami, A. I. Larkin, and Y. Nagaoka, Progress of Theoretical Physics 63(2), 707 (1980); doi: 10.1143/PTP.63.707.ADSCrossRefGoogle Scholar
  16. 16.
    F.V. Kusmartsev and A.M. Tsvelik, Sov. Phys. Journal–JETP Lett. 42, 257 (1985).ADSGoogle Scholar
  17. 17.
    E. C. Stoner and E.P. Wohlfarth, Philos. Trans. Royal Soc. London, A 240, 599 (1948); DOI: 10.1098/rsta.1948.0007.ADSCrossRefGoogle Scholar
  18. 18.
    C. P. Bean and J.D. Livingston, J. Appl. Phys. 30, 120S (1959); https://doi.org/10.1063/1.2185850.ADSCrossRefGoogle Scholar
  19. 19.
    R. S. de Biasi and T.C. Devezas, J. Appl. Phys. 49, 2466 (1978); https://doi.org/10.1063/1.325093.ADSCrossRefGoogle Scholar
  20. 20.
    V. K. Sharma and A. Baiker, J. Chem. Phys. 75, 5596 (1981); doi: 10.1063/1.441997.ADSCrossRefGoogle Scholar
  21. 21.
    Ya.G. Dorfman, Soviet Physics JETP 21(2), 472 (1965).ADSGoogle Scholar
  22. 22.
    J. I. Gittelman, B. Abelas, and S. Bozowski, Phys. Rev. B 9, 3891 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • V. Sakhin
    • 1
  • E. Kukovitsky
    • 1
  • A. Kiiamov
    • 2
  • R. Khasanov
    • 3
  • Yu. Talanov
    • 1
  • G. Teitel’baum
    • 1
    Email author
  1. 1.Kazan E.K. Zavoisky Physical-Technical Institute of Russian Academy of SciencesKazanRussia
  2. 2.Institute of PhysicsKazan Federal UniversityKazanRussia
  3. 3.Paul Scherrer InstituteVilligenSwitzerland

Personalised recommendations