Advertisement

Ising-XY Transition in Three-dimensional Frustrated Antiferromagnets with Collinear Spin Ordering

  • A.O. SorokinEmail author
Article
  • 2 Downloads

Abstract

Using Monte Carlo simulations, we study the critical behavior of two models of frustrated XY antiferromagnets with a collinear spin ordering and with an additional twofold degeneracy of the ground state. We consider a classic antiferromagnet on a body-centered cubic lattice with an additional antiferromagnetic exchange interaction between next-nearest spins, and a ferromagnet with an extra antiferromagnetic intralayer exchange. In both models, a single first-order transition in the discrete and continuous order parameters is found. Observed critical pseudo-exponents are in agreement with exponents of XY magnets with a planar spin ordering like a stacked-triangular antiferromagnet and helimagnets belonging to the same symmetry class. A possible explanation of the pseudo-scaling behavior is also discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Loison, in Frustrated Spin Systems, ed. byH.T. Diep, World Scientific, Singapore (2004), ch., 4, p. 177.Google Scholar
  2. 2.
    A. O. Sorokin and A. V. Syromyatnikov, Solid State Phenom., 190, 63 (2012).CrossRefGoogle Scholar
  3. 3.
    H. Kawamura, J. Appl. Phys., 63, 3086 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    B. Delamotte, D. Mouhanna, and M. Tissier, Phys. Rev. B, 69, 134413 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    M. Itakura, J. Phys. Soc. Jpn., 72, 74 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    A. Peles, B. W. Southern, B. Delamotte, D. Mouhanna, and M. Tissier, Phys. Rev. B, 69, 220408 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    V.T. Ngo and H.T. Diep, J. Appl. Phys., 103, 07C712 (2008).CrossRefGoogle Scholar
  8. 8.
    G. Zumbach, Phys. Rev. Lett., 71, 2421 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    G. Zumbach, Phys. Lett. A, 190, 225 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    G. Zumbach, Nucl. Phys. B, 413, 771 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    S. A. Antonenko, A. I. Sokolov, and K.B. Varnashev, Phys. Lett. A, 208, 161 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    A. Pelissetto, P. Rossi, and E. Vicari, Nucl. Phys. B, 607, 605 (2001).ADSCrossRefGoogle Scholar
  13. 13.
    P. Calabrese and P. Parruccini, Nucl. Phys. B, 679, 568 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    M. Tiesser, B. Delamotte, and D. Mouhanna, Phys. Rev. Lett., 84, 5208 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    M. Tiesser, B. Delamotte, and D. Mouhanna, Phys. Rev. B, 67, 134422 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    A. I. Larkin and S.A. Pikin, Sov. Phys. JETP, 29, 891 (1969).ADSGoogle Scholar
  17. 17.
    P. Peczak and D.P. Landau, Phys. Rev. B., 39, 11932 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    S. Iino, S. Morita, A. W. Sandvik, and N. Kawashima, arXiv 1801.02786.Google Scholar
  19. 19.
    D. Loison and K.D. Schotte, Eur. Phys. J. B, 5, 735 (1998).ADSCrossRefGoogle Scholar
  20. 20.
    E. F. Shender, Sov. Phys. JETP, 56, 178 (1982).Google Scholar
  21. 21.
    C. L. Henley, Phys. Rev. Lett., 62, 2056 (1989).ADSCrossRefGoogle Scholar
  22. 22.
    C. Pinettes and H.T. Diep, J. Appl. Phys., 83, 6318 (1998).ADSCrossRefGoogle Scholar
  23. 23.
    V. T. Ngo, D. T. Hoang, and H.T. Diep, Phys. Rev. E, 82, 041123 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    C. L. Henley, J. Appl. Phys., 61, 3962 (1986).ADSCrossRefGoogle Scholar
  25. 25.
    H. T. Diep and H. Kawamura, Phys. Rev. B, 40, 7019 (1989).ADSCrossRefGoogle Scholar
  26. 26.
    H. T. Diep, Phys. Rev. B, 45, 2863 (1992).ADSCrossRefGoogle Scholar
  27. 27.
    D. T. Hoang and H. T. Diep, Phys. Rev. E, 85, 041107 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    D. Loison and H.T. Diep, J. Appl. Phys., 73, 5642 (1993).ADSCrossRefGoogle Scholar
  29. 29.
    E.H. Boubcheur, D. Loison, and H. T. Diep, Phys. Rev. B, 54, 4165 (1996).ADSCrossRefGoogle Scholar
  30. 30.
    A. O. Sorokin, Phys. Lett. A, 382, 3455 (2018).ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    D. Loison and P. Simon, Phys. Rev. B, 61, 6114 (2000).ADSCrossRefGoogle Scholar
  32. 32.
    S.E. Korshunov, Phys. Usp., 49, 225 (2006).ADSCrossRefGoogle Scholar
  33. 33.
    A. O. Sorokin and A. V. Syromyatnikov, Phys. Rev. B., 85, 174404 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    A. O. Sorokin and A. V. Syromyatnikov, JETP Lett., 96, 410 (2012).ADSCrossRefGoogle Scholar
  35. 35.
    F.R. Brown and T. J. Woch, Phys. Rev. Lett., 58, 2394 (1987).ADSCrossRefGoogle Scholar
  36. 36.
    M. Creutz, Phys. Rev. D, 36, 515 (1987).ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    K. Binder, Z. Phys. B, 43, 119 (1981).ADSCrossRefGoogle Scholar
  38. 38.
    K. Binder, Phys. Rev. Lett., 47, 693 (1981).ADSCrossRefGoogle Scholar
  39. 39.
    A.M. Ferrenberg and D.P. Landau, Phys. Rev. B, 44, 5081 (1991).ADSCrossRefGoogle Scholar
  40. 40.
    A. O. Sorokin, JETP, 118, 417 (2014).ADSCrossRefGoogle Scholar
  41. 41.
    A. O. Sorokin and A. V. Syromyatnikov, JETP, 113, 673 (2011).ADSCrossRefGoogle Scholar
  42. 42.
    P. Calabrese, A. Pelissetto, and E. Vicari, Phys. Rev. B, 67, 054505 (2003).ADSCrossRefGoogle Scholar
  43. 43.
    A. Eichhorn, D. Mesterházy, and M.M. Scherer, Phys. Rev. E, 88, 042141 (2013).ADSCrossRefGoogle Scholar
  44. 44.
    H. Kawamura, J. Phys. Soc. Jpn., 61, 1299 (1992).ADSCrossRefGoogle Scholar
  45. 45.
    M. L. Plumer and A. Mailhot, Phys. Rev. B, 50, 16113 (1994).ADSCrossRefGoogle Scholar
  46. 46.
    S. Fujimoto, Phys. Rev. B, 73, 184401 (2006).ADSCrossRefGoogle Scholar
  47. 47.
    A. Pelissetto and E. Vicari, Phys. Rep., 368, 549 (2002).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.National Research Centre “Kurchatov Institute”Petersburg Nuclear Physics InstituteGatchinaRussia

Personalised recommendations