Advertisement

Interplay Between Coulomb Interaction and Hybridization in Ca and Anomalous Pressure Dependence of Resistivity

  • D. Y. NovoselovEmail author
  • D.M. Korotin
  • A.O. Shorikov
  • A.R. Oganov
  • V. I. Anisimov
Article
  • 3 Downloads

Abstract

Increasing external pressure gives rise to s–d electron transfer in calcium that results in the localization of the charge density in the interstices of the crystal structure, i.e., the formation of an electride. The corresponding electronic states are partially filled and localized and, hence, electronic correlations could arise. We have carried out theoretical calculations for the high-pressure phases of Ca taking into account the Coulomb interactions between the electronic states centered on the interstitial site. The results of our calculations and proposed microscopic model showed that the structural phase transition under high pressure is due to an interplay of hybridization and correlation effects. Furthermore, it was found that the Coulomb repulsion can explain the experimentally observed anomalous increase of resistivity of the simple cubic phase of calcium under pressure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Yabuuchi, Y. Nakamoto, K. Shimizu, and T. Kikegawa, J. Phys. Soc. Jpn., 74, 2391 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    H. Fujihisa, Y. Nakamoto, K. Shimizu, T. Yabuuchi, and Y. Gotoh, Phys. Rev. Lett., 101, 095503 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Yao, D. D. Klug, J. Sun, and R. Marton, Phys. Rev. Lett., 103, 055503 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    B. Li, Y. Ding, W. Yang, L. Wang, B. Zou, J. Shu, S. Sinogeikin, C. Park, G. Zou, and Ho-kwang Mao, Proc. Natl. Acad. Sci. U.S.A., 109, 16459 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    A.R. Oganov, Y. Ma, Y. Xu, I. Errea, A. Bergara, and A.O. Lyakhov, Proceedings of the National Academy of Sciences of the United States of America, 107, 7646 (2010); arXiv:1009.5476.ADSCrossRefGoogle Scholar
  6. 6.
    D. Belger, Z. Hüsges, E. Voloshina, and B. Paulus, J. Phys.: Cond. Matt., 22, 275504 (2010).ADSGoogle Scholar
  7. 7.
    Q.F. Gu, G. Krauss, Y. Grin, and W. Steurer, Phys. Rev. B–Cond. Matt. Mat. Phys., 79, 1 (2009).Google Scholar
  8. 8.
    A.M. Teweldeberhan, J. L. Dubois, and S. A. Bonev, Phys. Rev. Lett., 105, 1 (2010).CrossRefGoogle Scholar
  9. 9.
    H. Liu, W. Cui, and Y. Ma, J. Chem. Phys., 137, 184502 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    G. Kresse and J. Furthmuller, Phys. Rev. B, 54, 11169 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    A. Shorikov, M.M. Korshunov, and V. I. Anisimov, JETP Lett., 93, 80 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    A.A. Mostofi, J.R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun., 185, 2309 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • D. Y. Novoselov
    • 1
    • 2
    Email author
  • D.M. Korotin
    • 1
  • A.O. Shorikov
    • 1
    • 2
  • A.R. Oganov
    • 3
    • 4
  • V. I. Anisimov
    • 1
    • 2
  1. 1.M.N.Miheev Institute of MetalPhysics of Ural Branch of Russian Academy of SciencesYekaterinburgRussia
  2. 2.Department of theoretical physics and applied mathematicsUral Federal UniversityYekaterinburgRussia
  3. 3.Skolkovo Institute of Science and TechnologyMoscowRussia
  4. 4.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations