Advertisement

JETP Letters

, Volume 109, Issue 5, pp 286–291 | Cite as

Note on Reflection Positivity in Nonlocal Gravity

  • M. ChristodoulouEmail author
  • L. ModestoEmail author
Astrophysics and Cosmology
  • 7 Downloads

Abstract

A necessary condition for reflection positivity is that the free propagator be positive. Contrary to recent claims in the literature, we show that this is indeed the case for a large class of nonlocal field theories when the mass vanishes. We restrict attention to scalar field theories relevant for weakly nonlocal gravity and gauge theories.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. V. Krasnikov, Theor. Math. Phys. 73, 1184 (1987).CrossRefGoogle Scholar
  2. 2.
    Y. V. Kuz’min, Sov. J. Nucl. Phys. 50, 1011 (1989).Google Scholar
  3. 3.
    E. T. Tomboulis, Mod. Phys. Lett. A 30, 1540005 (2015); hep-th/9702146.ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    L. Modesto, Phys. Rev. D 86, 044005 (2012); arXiv:1107.2403 [hep-th].ADSCrossRefGoogle Scholar
  5. 5.
    L. Modesto and L. Rachwal, Nucl. Phys. B 889, 228 (2014); arXiv:1407.8036 [hep-th].ADSCrossRefGoogle Scholar
  6. 6.
    L. Modesto and I. L. Shapiro, Phys. Lett. B 755, 279 (2016); arXiv:1512.07600 [hep-th].ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Modesto, Nucl. Phys. B 909, 584 (2016); arXiv:1602.02421 [hep-th].ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    T. D. Lee and G. C. Wick, Nucl. Phys. B 9, 209 (1969).ADSCrossRefGoogle Scholar
  9. 9.
    T. D. Lee and G. C. Wick, Phys. Rev. D 2, 1033 (1970).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    R. E. Cutkosky, P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, Nucl. Phys. B 12, 281 (1969).ADSCrossRefGoogle Scholar
  11. 11.
    D. Anselmi and M. Piva, J. High Energy Phys. 1706, 066 (2017); arXiv:1703.04584 [hep-th].ADSCrossRefGoogle Scholar
  12. 12.
    D. Anselmi and M. Piva, Phys. Rev. D 96, 045009 (2017); arXiv:1703.05563 [hep-th].ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    D. Anselmi, J. High Energy Phys. 1802, 141 (2018); arXiv:1801.00915[hep-th].ADSCrossRefGoogle Scholar
  14. 14.
    L. Modesto and F. Briscese, to appear.Google Scholar
  15. 15.
    E. T. Tomboulis, Phys. Rev. D 92, 125037 (2015).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Asorey, L. Rachwal, and I. Shapiro, Galaxies 6, 23 (2018); arXiv:1802.01036 [hep-th].ADSCrossRefGoogle Scholar
  17. 17.
    V. A. Kostelecky and S. Samuel, Phys. Rev. D 42, 1289 (1990).ADSCrossRefGoogle Scholar
  18. 18.
    G. Calcagni and L. Modesto, Phys. Rev. D 91, 124059 (2015); arXiv:1404.2137 [hep-th].ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    R. Trinchero, Int. J. Geom. Meth. Mod. Phys. 15, 1850022 (2017); arXiv:1703.07735 [hep-th].MathSciNetCrossRefGoogle Scholar
  20. 20.
    F. Arici, D. Becker, C. Ripken, F. Saueressig, and W. D. van Suijlekom, arXiv:1712.04308 [hep-th].Google Scholar
  21. 21.
    K. Osterwalder and R. Schrader, Commun. Math. Phys. 31, 83 (1973).ADSCrossRefGoogle Scholar
  22. 22.
    K. Osterwalder and R. Schrader, Commun. Math. Phys. 42, 281 (1975).ADSCrossRefGoogle Scholar
  23. 23.
    A. Uhlmann, Czechosl. J. Phys. B 29, 117 (1979).ADSCrossRefGoogle Scholar
  24. 24.
    G. V. Efimov, Nonlocal Interactions (Nauka, Moscow, 1977) [in Russian].Google Scholar
  25. 25.
    W. T. Sulaiman, Adv. Pure Math. 01(03), 63 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Department of PhysicsSouthern University of Science and TechnologyShenzhenPeople’s Republic of China

Personalised recommendations