Advertisement

On-chip Piezoelectric Actuation of Nanomechanical Resonators Containing a Two-dimensional Electron Gas

  • A. A. ShevyrinEmail author
  • A. K. Bakarov
  • A. A. Shklyaev
  • A. S. Arakcheev
  • M. Kurosu
  • H. Yamaguchi
  • A. G. Pogosov
Article

Abstract

The on-chip piezoelectric actuation is experimentally shown to be a suitable method for driving the resonant vibrations of AlGaAs/GaAs-based nanomechanical resonators containing a two-dimensional electron gas. Both flexural and torsional vibrations of 166 nm-thick cantilevers and doubly clamped beams can be driven using this method at room temperature. At least two points should be addressed when reducing the size of the piezoelectrically-driven resonators. First, as shown in the paper, the parasitic attenuation of the driving electrical signal becomes the main factor limiting the actuation efficiency at the eigenfrequencies increased to the megahertz range due to the size reduction. Second, thin and relatively long bridge-like AlGaAs/GaAsbased resonators are prone to the Euler buckling instability caused by the longitudinal compressive stress. It is demonstrated that the buckling does not hinder the actuation at near-critical compression. However, a large super-critical compression can lead to a complete suppression of the piezoelectrically-driven vibrations. A method to avoid this suppression is proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, Nat 7, 301 (2012).Google Scholar
  2. 2.
    A. N. Cleland and M. L. Roukes, Natur 392, 160 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    H. J. Mamin and D. Rugar, Appl 79, 3358 (2001).ADSGoogle Scholar
  4. 4.
    K. Moskovtsev and M. I. Dykman, Phys 95, 085426 (2017).Google Scholar
  5. 5.
    M. Poot and H. S. J. van der Zant, Phys 511, 273 (2012).Google Scholar
  6. 6.
    T. Kouh, M. S. Hanay, and K. L. Ekinci, Micromachine 8, 108 (2017).CrossRefGoogle Scholar
  7. 7.
    K. Ekinci, Smal 1, 786 (2005).CrossRefGoogle Scholar
  8. 8.
    K. L. Ekinci and M. L. Roukes, Rev 76, 061101 (2005).Google Scholar
  9. 9.
    A. A. Shevyrin, A. G. Pogosov, M. V. Budantsev, A. K. Bakarov, A. I. Toropov, S. V. Ishutkin, E. V. Shesterikov, A. S. Kozhukhov, S. S. Kosolobov, and T. A. Gavrilova, Appl 101, 241916 (2012).ADSGoogle Scholar
  10. 10.
    A. A. Shevyrin, A. G. Pogosov, M. V. Budantsev, A. K. Bakarov, A. I. Toropov, S. V. Ishutkin, E. V. Shesterikov, and A. S. Arakcheev, Appl 103, 131905 (2013).ADSGoogle Scholar
  11. 11.
    I. Bargatin, E. B. Myers, J. Arlett, B. Gudlewski, and M. L. Roukes, Appl 86, 133109 (2005).ADSGoogle Scholar
  12. 12.
    K. Brueckner, F. Niebelschuetz, K. Tonisch, S. Michael, A. Dadgar, A. Krost, V. Cimalla, O. Ambacher, R. Stephan, and M. A. Hein, Appl 93, 173504 (2008).ADSGoogle Scholar
  13. 13.
    M. Faucher, B. Grimbert, Y. Cordier, N. Baron, A. Wilk, H. Lahreche, P. Bove, M. Francois, P. Tilmant, T. Gehin, C. Legrand, M. Werquin, L. Buchaillot, C. Gaquiere, and D. Theron, Appl 94, 233506 (2009).ADSGoogle Scholar
  14. 14.
    H. Yamaguchi, Semicond 32, 103003 (2017).CrossRefGoogle Scholar
  15. 15.
    Y. Okazaki, I. Mahboob, K. Onomitsu, S. Sasaki, and H. Yamaguchi, Nat 7, 11132 (2016).Google Scholar
  16. 16.
    Y. Okazaki, I. Mahboob, K. Onomitsu, S. Sasaki, and H. Yamaguchi, Appl 103, 192105 (2013).ADSGoogle Scholar
  17. 17.
    I. Mahboob and H. Yamaguchi, Nat 3, 275 (2008).Google Scholar
  18. 18.
    I. Mahboob, N. Perrissin, K. Nishiguchi, D. Hatanaka, Y. Okazaki, A. Fujiwara, and H. Yamaguchi, Nano 15, 2312 (2015).ADSGoogle Scholar
  19. 19.
    A. N. Cleland, J. S. Aldridge, D. C. Driscoll, and A. C. Gossard, Appl 81, 1699 (2002).ADSGoogle Scholar
  20. 20.
    A. A. Shevyrin, A. G. Pogosov, M. V. Budantsev, A. K. Bakarov, A. I. Toropov, E. E. Rodyakina, and A. A. Shklyaev, Appl 106, 183110 (2015).ADSGoogle Scholar
  21. 21.
    S. C. Masmanidis, R. B. Karabalin, I. De Vlaminck, G. Borghs, M. R. Freeman, and M. L. Roukes, Scienc 317, 780 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    D. Hatanaka, I. Mahboob, H. Okamoto, K. Onomitsu, and H. Yamaguchi, Appl 101, 063102 (2012).ADSGoogle Scholar
  23. 23.
    P. Mohanty, D. A. Harrington, K. L. Ekinci, Y. T. Yang, M. J. Murphy, and M. L. Roukes, Phys 66, 085416 (2002).Google Scholar
  24. 24.
    N. Ruhe, J. I. Springborn, C. Heyn, M. A. Wilde, and D. Grundler, Phys 74, 235326 (2006).Google Scholar
  25. 25.
    J. P. Eisenstein, Appl 46, 695 (1985).ADSGoogle Scholar
  26. 26.
    J. E. Losby, F. F. Sani, D. T. Grandmont, Z. Diao, M. Belov, J. A. J. Burgess, S. R. Compton, W. K. Hiebert, D. Vick, K. Mohammad, E. Salimi, G. E. Bridges, D. J. Thomson, and M. R. Freeman, Scienc 350, 798 (2015).ADSCrossRefGoogle Scholar
  27. 27.
    L. Nicu and C. Bergaud, J. Appl. Phys. 86, 5835 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. A. Shevyrin
    • 1
    Email author
  • A. K. Bakarov
    • 1
    • 2
  • A. A. Shklyaev
    • 1
    • 2
  • A. S. Arakcheev
    • 2
    • 3
  • M. Kurosu
    • 4
    • 5
  • H. Yamaguchi
    • 4
    • 5
  • A. G. Pogosov
    • 1
    • 2
  1. 1.Rzhanov Institute of Semiconductor Physics Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Budker Institute of Nuclear Physics Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  4. 4.NTT Basic Research LaboratoriesAtsugi-shi, KanagawaJapan
  5. 5.Department of PhysicsTohoku UniversitySendaiJapan

Personalised recommendations