Towards an Effective Theory of Skyrmion Crystals

  • V. E. Timofeev
  • A. O. Sorokin
  • D. N. AristovEmail author


We consider multiskyrmion configurations in 2D ferromagnets with Dzyaloshinskii–Moriya interaction and the magnetic field, using the stereographic projection method. In the absence of Dzyaloshinskii–Moriya interaction, D, and the field, B, the skyrmions do not interact and the exact multiskyrmion solution is a sum of individual projections. In certain range of B,D ≠ 0, skyrmions become stable and form a hexagonal lattice. The shape of one skyrmion on the plane is fully determined by D and B. We describe multiskyrmion configurations by simple sums of individual skyrmion projections, of the same shape and adjusted scale. This procedure reveals pairwise and triple interactions between skyrmions, and the energy of proposed hexagonal structure is found in a good agreement with previous studies. It allows an effective theory of skyrmion structures in terms of variables, referring to individual skyrmions, i.e., their position, size and phase, elliptic distortions etc.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Nagaosa and Y. Tokura, Nature Nanotech. 8, 899 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    M. Garst, J. Waizner, and D. Grundler, J. Phys. D: Appl. Phys. 50, 293002 (2017).CrossRefGoogle Scholar
  3. 3.
    N. Bogdanov and D.A. Yablonskii, Sov. Phys. JETP 68, 101 (1989).Google Scholar
  4. 4.
    N. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    U.K. Roßler, N. Bogdanov, and C. Pfleiderer, Nature 442, 797 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    B. Binz, A. Vishwanath, and V. Aji, Phys. Rev. Lett. 96, 207202 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    T. Okubo, S. Chung, and H. Kawamura, Phys. Rev. Lett. 108, 017206 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel, Nature Phys. 7, 713 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, Science 323, 915 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    X. Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Nature 465, 901 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    C. Pfleiderer, Nature Phys. 7, 673 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    P. Bak and M. H. Jensen, J. Phys. C: Solid State Phys. 13, L881 (1980).Google Scholar
  13. 13.
    O. Nakanishi, A. Yanase, A. Hasegawa, and M. Kataoka, Solid State Commun. 35, 995 (1980).ADSCrossRefGoogle Scholar
  14. 14.
    A. A. Belavin and A.M. Polyakov, JETP Lett. 22, 245 (1975).ADSGoogle Scholar
  15. 15.
    A. O. Sorokin, JETP 118, 417 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    J. Garaud, K.A.H. Sellin, J. Jäykkä, and E. Babaev, Phys. Rev. B 89, 104508 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    D. F. Agterberg, E. Babaev, and J. Garaud, Phys. Rev. B 90, 064509 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    M. S. Scheurer and J. Schmalian, Nature Commun. 6, 6005 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    D. N. Aristov and A. Luther, Phys. Rev. B 65, 165412 (2002).ADSCrossRefGoogle Scholar
  20. 20.
    A. B. Borisov, J. Kishine, I. G. Bostrem, and A. S. Ovchinnikov, Phys. Rev. B 79, 134436 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    V.V. Kiselev and A.A. Raskovalov, Theor. Math. Phys. 173, 1565 (2012).CrossRefGoogle Scholar
  22. 22.
    Y. Togawa, T. Koyama, K. Takayanagi, S. Mori, Y. Kousaka, J. Akimitsu, S. Nishihara, K. Inoue, A. S. Ovchinnikov, and J. Kishine, Phys. Rev. Lett. 108, 107202 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    A.O. Leonov, T. L. Monchesky, N. Romming, A. Kubetzka, A.N. Bogdanov, and R. Wiesendanger, New. J. of Phys 18, 065003 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    V.P. Kravchuk, D.D. Sheka, U.K. Roßler, J. van den Brink, and Yu. Gaididei, Phys. Rev. B 97, 064403 (2018).ADSCrossRefGoogle Scholar
  25. 25.
    D. N. Aristov, S. S. Kravchenko, and A. O. Sorokin, JETP lett. 102, 455 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    N. Bogdanov and A. Hubert, Phys. Stat. Sol. (b) 186, 527 (1994).ADSCrossRefGoogle Scholar
  27. 27.
    D. D. Sheka, B.A. Ivanov, and F.G. Mertens, Phys. Rev. B 64, 024432 (2001).ADSCrossRefGoogle Scholar
  28. 28.
    K. L. Metlov, Phys. Rev. B 88, 014427 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • V. E. Timofeev
    • 1
    • 2
    • 3
  • A. O. Sorokin
    • 1
    • 2
  • D. N. Aristov
    • 1
    • 2
    Email author
  1. 1.NRC “Kurchatov Institute”Petersburg Nuclear Physics InstituteGatchinaRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.St. Petersburg Electrotechnical University “LETI”St. PetersburgRussia

Personalised recommendations