Antiadiabatic Phonons, Coulomb Pseudopotential and Superconductivity in Eliashberg–McMillan Theory

  • M. V. SadovskiiEmail author


The influence of antiadiabatic phonons on the temperature of superconducting transition is considered within Eliashberg–McMillan approach in the model of discrete set of (optical) phonon frequencies. A general expression for superconducting transition temperature Tc is proposed, which is valid in situation, when one (or several) of such phonons becomes antiadiabatic. We study the contribution of such phonons into the Coulomb pseudopotential μ*. It is shown, that antiadiabatic phonons do not contribute to Tolmachev’s logarithm and its value is determined by partial contributions from adiabatic phonons only. The results obtained are discussed in the context of the problem of unusually high superconducting transition temperature of FeSe monolayer on STO.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Scalapino, in Superconductivity, ed. byR.D.Parks, Marcel Dekker, N.Y. (1969), p. 449.Google Scholar
  2. 2.
    S. V. Vonsovsky, Yu.A. Izyumov, and E. Z. Kurmaev, Sverkhprovodimost’ perekhodnihh metallov ikh splavov i soedinenii, Nauka, M. (1977) [S.V. Vonsovsky, Yu.A. Izyumov, and E.Z. Kurmaev, Superconductivity of Transition metals, Their Alloys and Compounds, Springer, Berlin–Heidelberg (1982)].Google Scholar
  3. 3.
    P. B. Allen and B. Mitrović, Solid State Physics, ed. by F. Seitz, D. Turnbull, and H. Ehrenreich, Academic Press, N.Y. (1982), p.1.Google Scholar
  4. 4.
    L.P. Gor’kov and V. Z. Kresin, Rev. Mod. Phys. 90, 011001 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    A. B. Migdal, ZhETF 34, 1438 (1958).[Sov. Phys. JETP 7, 996 (1958)..Google Scholar
  6. 6.
    M. V. Sadovskii, ZhETF 155 (2019) (in press) [JETP 128 (2019) (to be published)]; ArXiv:1809.02531.Google Scholar
  7. 7.
    M.A. Ikeda, A. Ogasawara, and M. Sugihara, Phys. Lett. A 170, 319 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    M. V. Sadovskii, Usp. Fiz. Nauk 178, 1243 (2008).[Physics Uspekhi 51, 1243 (2008).CrossRefGoogle Scholar
  9. 9.
    L.P. Gor’kov, Phys. Rev. B 93, 054517 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    L.P. Gor’kov, Phys. Rev. B 93, 060507 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    A. E. Karakozov, E. G. Maksimov, and S.A. Mashkov, ZhETF 68, 1937 (1975).[JETP 41, 971 (1975)..Google Scholar
  12. 12.
    D.A. Kirzhnits, E.G. Maksimov, and D. I. Khomskii, J. Low. Temp. Phys. 10, 79 (1973).ADSCrossRefGoogle Scholar
  13. 13.
    L. Pietronero, S. Strässler, and C. Grimaldi, Phys. Rev. B 52, 10516 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    C. Grimaldi, L. Pietronero, and S. Strässler, Phys. Rev. B 52, 10530 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    J. J. Lee, F.T. Schmitt, R.G. Moore, S. Johnston, Y.T. Cui, W. Li, Z.K. Liu, M. Hashimoto, Y. Zhang, D.H. Lu, T. P. Devereaux, D.H. Lee, and Z.X. Shen, Nature 515, 245 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    I.A. Nekrasov, N. S. Pavlov, and M.V. Sadovskii, Pis’ma v ZhETF 105, 354 (2017).[JETP Lett. 105, 370 (2017)..Google Scholar
  17. 17.
    I.A. Nekrasov, N. S. Pavlov, and M.V. Sadovskii, ZhETF 153, 590 (2018).[JETP 126, 485 (2018)..Google Scholar
  18. 18.
    Y. Wang, A. Linscheid, T. Berlijn, and S. Johnson, Phys. Rev. B 93, 134513 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Institute for ElectrophysicsRussian Academy of Sciences Ural BranchEkaterinburgRussia

Personalised recommendations