Advertisement

JETP Letters

, Volume 108, Issue 9, pp 641–652 | Cite as

Resonance Tunneling Phenomena in Two-Dimensional Multilayer van der Waals Crystalline Systems

  • E. E. VdovinEmail author
  • Yu. N. Khanin
Scientific Summaries
  • 13 Downloads

Abstract

Works, mostly experimental, concerning the most interesting features of application of the resonant tunneling spectroscopy to a new type of heterosystems, van der Waals heterostructures, have been briefly reviewed. These heterostructures appeared after the recent discovery of two-dimensional crystals, which are a new class of materials beginning with graphene. The role of the angular matching of crystal lattices of conducting graphene electrodes of van der Waals systems in carrier tunneling between them has been analyzed together with the closely related problems of satisfaction of conservation laws in tunneling transitions. Manifestations of multiparticle correlation interactions between carriers in van der Waals systems such as Wigner crystallization of electrons in a two-dimensional electron gas in a magnetic field and Bose condensation of excitons in parallel two-dimensional electron gases have been briefly discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. L. Wolf, Principles of Electron Tunneling Spectroscopy (Oxford Univ. Press, New York, 1985).Google Scholar
  2. 2.
    R. K. Hayden, D. K. Maude, L. Eaves, E. C. Valadares, M. Henini, F. W. Sheard, O. H. Hughes, J. C. Portal, and L. Cury, Phys. Rev. Lett. 66, 1749 (1991).ADSCrossRefGoogle Scholar
  3. 3.
    J. Smoliner, W. Demmerle, G. Berthold, E. Gornik, G. Weimann, and W. Schlapp, Phys. Rev. Lett. 63, 2116 (1989).ADSCrossRefGoogle Scholar
  4. 4.
    J. Wang, P. H. Beton, N. Mori, L. Eaves, H. Buhmann, L. Mansouri, P. C. Main, T. J. Foster, and M. Henini, Phys. Rev. Lett. 73, 1146 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    E. E. Vdovin, A. Levin, A. Patan, L. Eaves, P. C. Main, Y. N. Khanin, Y. V. Dubrovskii, M. Henini, and G. Hill, Science (Washington, DC, U. S.) 290, 122 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    A. K. Geim, P. C. Main, N. la Scala, Jr., L. Eaves, T. J. Foster, P. H. Beton, J. W. Sakai, F. W. Sheard, M. Henini, G. Hill, and M. A. Pate, Phys. Rev. Lett. 72, 2061 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    P. C. Main, A. S. G. Thornton, R. J. A. Hill, S. T. Stoddart, T. Ihn, L. Eaves, K. A. Benedict, and M. Henini, Phys. Rev. Lett. 84, 729 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    A. H. Castro Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science (Washington, DC, U. S.) 335, 947 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    A. Mishchenko, J. S. Tu, Y. Cao, et al., Nat. Nanotech. 9, 808 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    M. Zhu, D. Ghazaryan, S.-K. Son, C. R. Woods, A. Misra, L. He, T. Taniguchi, K. Watanabe, K. Novoselov, Y. Cao, and A. Mishchenko, 2D Mater. 4, 011013 (2017).CrossRefGoogle Scholar
  12. 12.
    E. E. Vdovin, A. Mishchenko, M. T. Greenaway, et al., Phys. Rev. Lett. 116, 186603 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    U. Chandni, K. Watanabe, T. Taniguchi, and J. P. Eisenstein, Nano Lett. 15, 7329 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    U. Chandni, K. Watanabe, T. Taniguchi, and J. P. Eisenstein, Nano Lett. 16, 7982 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    R. M. Feenstra, D. Jena, and G. Gu, J. Appl. Phys. 111, 043711 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    R. M. Feenstra, S. C. de la Barrera, J. Li, Y. Nie, and K. Cho, J. Phys.: Condens. Matter 30, 055703 (2018).ADSGoogle Scholar
  17. 17.
    K. Kim, M. Yankowitz, B. Fallahazad, S. Kang, H. C. P. Movva, Sh. Huang, S. Larentis, Ch. M. Corbet, T. Taniguchi, K. Watanabe, S. K. Banerjee, B. J. LeRoy, and E. Tutuc, Nano Lett. 16, 1989 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    L. Britnell, R. V. Gorbachev, A. K. Geim, L. A. Ponomarenko, A. Mishchenko, M. T. Greenaway, T. M. Fromhold, K. S. Novoselov, and L. Eaves, Nat. Commun. 4, 1794 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    L. Brey, Phys. Rev. Appl. 2, 014003 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    J. R. Wallbank, D. Ghazaryan, A. Misra, et al., Science (Washington, DC, U. S.) 353 (6299), 575 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    J. P. Eisenstein, T. J. Gramila, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 44, 6511 (1991).ADSCrossRefGoogle Scholar
  22. 22.
    L. Pratley and U. Zülicke, Phys. Rev. B 88, 245412 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    K. Kim, N. Prasad, H. C. P. Movva, G. W. Burg, Y. Wang, S. Larentis, T. Taniguchi, K. Watanabe, L. F. Register, and E. Tutuc, Nano Lett. 18, 5967 (2018).ADSCrossRefGoogle Scholar
  24. 24.
    M. T. Greenaway, E. E. Vdovin, A. Mishchenko, O. Makarovsky, A. Patane, J. R. Wallbank, Y. Cao, A. V. Kretinin, M. J. Zhu, S. V. Morozov, V. I. Fal’ko, K. S. Novoselov, A. K. Geim, T. M. Fromhold, and L. Eaves, Nat. Phys. 11, 1057 (2015).CrossRefGoogle Scholar
  25. 25.
    J. P. Eisenshtein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 69, 3804 (1992).ADSCrossRefGoogle Scholar
  26. 26.
    N. Turner, J. T. Nicholls, E. H. Linfield, K. M. Brown, G. A. Jones, and D. A. Ritchie, Phys. Rev. B 54, 10614 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    Yu. N. Khanin, E. E. Vdovin, A. Mishchenko, Zh. S. Tu, A. Kozikov, R. V. Gorbachev, and K. S. Novoselov, JETP Lett. 104, 334 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    Yu. N. Khanin, E. E. Vdovin, I. A. Larkin, O. Makarovskii, Yu. A. Sklyueva, A. Mishchenko, Yu. B. Vang, A. Kozikov, R. V. Gorbachev, and K. S. Novoselov, JETP Lett. 107, 238 (2018).ADSCrossRefGoogle Scholar
  29. 29.
    P. D. Ye, L. W. Engel, D. C. Tsui, R. M. Lewis, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 89, 176802 (2002).ADSCrossRefGoogle Scholar
  30. 30.
    R. Cote and A. H. MacDonald, Phys. Rev. Lett. 65, 2662 (1990).ADSCrossRefGoogle Scholar
  31. 31.
    Y. Hatsugai, P.-A. Bares, and X. G. Wen, Phys. Rev. Lett. 71, 424 (1993).ADSCrossRefGoogle Scholar
  32. 32.
    S. He, P. M. Platzman, and B. I. Halperin, Phys. Rev. Lett. 71, 777 (1993).ADSCrossRefGoogle Scholar
  33. 33.
    A. L. Efros and F. G. Pikus, Phys. Rev. B 48, 14694 (1993).ADSCrossRefGoogle Scholar
  34. 34.
    V. T. Dolgopolov, Phys. Usp. 60, 731 (2017).ADSCrossRefGoogle Scholar
  35. 35.
    H. P. Dahal, Y. N. Joglekar, K. S. Bedell, and A. V. Balatsky, Phys. Rev. B 74, 233405 (2006).ADSCrossRefGoogle Scholar
  36. 36.
    C.-H. Zhang and Y. N. Joglekar, Phys. Rev. B 75, 245414 (2007).ADSCrossRefGoogle Scholar
  37. 37.
    I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 84, 5808 (2000).ADSCrossRefGoogle Scholar
  38. 38.
    J. P. Eisenstein and A. H. MacDonald, Nature (London, U.K.) 432, 691 (2004).ADSCrossRefGoogle Scholar
  39. 39.
    I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 87, 036803 (2001).ADSCrossRefGoogle Scholar
  40. 40.
    Yu. N. Khanin, E. E. Vdovin, Yu. V. Dubrovskii, and M. Henini, JETP Lett. 84, 209 (2006).CrossRefGoogle Scholar
  41. 41.
    A. I. Bezuglyi, Fiz. Nizk. Temp. 31, 1153 (2005).Google Scholar
  42. 42.
    G. W. Burg, N. Prasad, K. Kim, T. Taniguchi, K. Watanabe, A. H. MacDonald, L. F. Register, and E. Tutuc, Phys. Rev. Lett. 120, 177702 (2018).ADSCrossRefGoogle Scholar
  43. 43.
    G. W. Burg, N. Prasad, B. Fallahazad, A. Valsaraj, K. Kim, T. Taniguchi, K. Watanabe, Q. Wang, M. J. Kim, L. F. Register, and E. Tutuc, Nano Lett. 17, 3919 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute for Problems of Microelectronics Technologies and High-Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations