Advertisement

JETP Letters

, Volume 108, Issue 9, pp 616–622 | Cite as

14N Nuclear Magnetic Resonance and Relaxation in the Paramagnetic Region of Uranium Mononitride

  • V. V. OgloblichevEmail author
  • A. M. Potapov
  • S. V. Verkhovskii
  • A. V. Mirmelstein
Condensed Matter
  • 6 Downloads

Abstract

The spin susceptibility of a polycrystalline sample of uranium mononitride UN is studied by measuring the 14N NMR line shift, spin–lattice relaxation rates of the nuclear spin, and static magnetic susceptibility in the temperature region of 1.5TN < T < 7TN A joint analysis of the results obtained has revealed the temperature dependence of the characteristic energy of spin fluctuations of the uranium 5f electrons: Γnmr(T) ∝ T0.54(4) close to the dependence Γ(T) ∝ T0.5 characteristic of concentrated Kondo systems above the coherent state formation temperature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Troć, in Pnictides and Chalcogenides III (Actinidemonopnictides), Ed. by H. P. J. Wijn, Vol. 27 of Landolt-Börnstein, New Series, Group III (Springer, Berlin, 2006).Google Scholar
  2. 2.
    P. R. Norton, R. L. Tapping, D. K. Creber, and W. J. L. Buyers, Phys. Rev. B 21, 2572 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    H. H. Hill, in Plutonium 1970 and Other Actinides, Ed. by W. N. Miner (Am. Inst. of Mining, Metall., Pet. Eng., New York, 1970), Vol. 17, p. 2.Google Scholar
  4. 4.
    S.-I. Fujimori, T. Ohkochi, T. Okane, Y. Saitoh, A. Fujimori, H. Yamagami, Y. Haga, E. Yamamoto, and Y. Onuki, Phys. Rev. B 86, 235108 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    J. M. Fournier, J. Beille, A. Boeuf, C. Vettier, and A. Wedgwood, Phys. B+C (Amsterdam, Neth.) 102, 282 (1980).ADSCrossRefGoogle Scholar
  6. 6.
    Q. Yin, A. Kutepov, K. Haule, G. Kotliar, S. Y. Savrasov, and W. E. Pickett, Phys. Rev. B 84, 195111 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    A. V. Lukoyanov and V. I. Anisimov, J. Exp. Theor. Phys. 123, 864 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    N. B. Brandt and V. V. Moshchalkov, Adv. Phys. 33, 373 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    R. Troć, J. Solid State Chem. 13, 14 (1975).ADSCrossRefGoogle Scholar
  10. 10.
    C. F. van Doorn and P. de V. du Plessis, J. Low Temp. Phys. 28, 391 (1977).ADSCrossRefGoogle Scholar
  11. 11.
    N. A. Curry, Proc. Phys. Soc. 86, 1193 (1965).ADSCrossRefGoogle Scholar
  12. 12.
    J. Grunzweig-Genossar, M. Kuznietz, and F. Friedman, Phys. Rev. 173, 562 (1968).ADSCrossRefGoogle Scholar
  13. 13.
    T. M. Holden, W. J. L. Buyers, E. C. Svensson, and G. H. Lander, Phys. Rev. B 30, 114 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    M. Kuznietz, Phys. Rev. 180, 476 (1969).ADSCrossRefGoogle Scholar
  15. 15.
    M. Kuznietz and D. O. van Ostenburg, Phys. Rev. B 2, 3453 (1970).ADSCrossRefGoogle Scholar
  16. 16.
    J. Staun Olsen, L. Gerward, and U. Benedict, J. Appl. Crystallogr. 18, 37 (1985).CrossRefGoogle Scholar
  17. 17.
    C.-H. de Novion and P. Costa, J. Phys. 33, 257 (1972).CrossRefGoogle Scholar
  18. 18.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961).Google Scholar
  19. 19.
    J. A. C. Marples, C. F. Sampson, F. A. Wedgwood, and M. Kuznietz, J. Phys. C 8, 708 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    H. W. Knott, G. H. Lander, M. H. Mueller, and O. Vogt, Phys. Rev. B 21, 4159 (1980).ADSCrossRefGoogle Scholar
  21. 21.
    M. Kuznietz, J. Chem. Phys. 49, 3731 (1968).ADSCrossRefGoogle Scholar
  22. 22.
    J. L. Boutard, C. H. de Novion, and H. Alloul, J. Phys. 41, 845 (1980).CrossRefGoogle Scholar
  23. 23.
    J. Winter, Magnetic Resonance in Metals (Clarendon, Oxford, New York, 1971).Google Scholar
  24. 24.
    A. Narath, in Hyperfine Interactions (Academic, New York, 1967).Google Scholar
  25. 25.
    J. Korringa, Physica 16, 601 (1950).ADSCrossRefGoogle Scholar
  26. 26.
    S. Takagi, N. Niitsuma, T. Yoshida, and T. Kasuya, J. Phys. Soc. Jpn. 56, 2287 (1987).ADSCrossRefGoogle Scholar
  27. 27.
    H. Suzuki, S. Takagi, K. Mattenberger, and O. Vogt, Phys. B (Amsterdam, Neth.) 186–188, 755 (1993).CrossRefGoogle Scholar
  28. 28.
    T. Moriya, J. Phys. Soc. Jpn. 18, 516 (1963).ADSCrossRefGoogle Scholar
  29. 29.
    T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985).CrossRefGoogle Scholar
  30. 30.
    A. Solontsov and V. P. Silin, Phys. Lett. A 334, 453 (2005).ADSCrossRefGoogle Scholar
  31. 31.
    T. Moriya and K. Ueda, Solid State Commun. 15, 169 (1974).ADSCrossRefGoogle Scholar
  32. 32.
    S. Kambe, H. Sakai, Y. Tokunaga, T. D. Matsuda, Y. Haga, H. Chudo, and R. E. Walstedt, Phys. Rev. B 77, 134418 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    H. Chudo, G. Koutroulakis, H. Yasuoka, E. D. Bauer, P. N. Tobash, J. N. Mitchell, and J. D. Thompson, J. Phys.: Condens. Matter 26, 036001 (2014).Google Scholar
  34. 34.
    M. Kuznietz, Y. Baskin, and G. A. Matzkanin, Phys. Rev. 187, 737 (1969).ADSCrossRefGoogle Scholar
  35. 35.
    T. Moriya, Prog. Theor. Phys. 16, 23 (1956).ADSCrossRefGoogle Scholar
  36. 36.
    E. S. Clementyev and A. V. Mirmelstein, J. Exp. Theor. Phys. 109, 128 (2009).ADSCrossRefGoogle Scholar
  37. 37.
    D. L. Cox, N. E. Bickers, and J. W. Wilkins, J. Appl. Phys. 57, 3166 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. V. Ogloblichev
    • 1
    Email author
  • A. M. Potapov
    • 2
  • S. V. Verkhovskii
    • 1
  • A. V. Mirmelstein
    • 3
  1. 1.Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of High-Temperature Electrochemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  3. 3.Russian Federal Nuclear Center VNIITFSnezhinsk, Chelyabinsk regionRussia

Personalised recommendations