Advertisement

JETP Letters

, Volume 108, Issue 9, pp 637–640 | Cite as

Semiconductor Nanoparticle in an Electric Field

  • M. A. KozhushnerEmail author
  • B. V. Lidskii
  • V. S. Posvyanskii
  • L. I. Trakhtenberg
Miscellaneous
  • 5 Downloads

Abstract

The distributions of electrons and positive charges within a spherical semiconductor nanoparticle with surface electron traps in a uniform applied electric field are studied. The minimization of the total free energy gives the resulting effective electric field, which depends on the densities of donors and surface traps, as well as on the distance from the center of the nanoparticle. It is shown that the near-surface field at a relatively low donor density in the region of its entrance to the nanoparticle significantly differs from that in the region of its departure from the nanoparticle. The induced dipole moment of the nanoparticle is calculated and different contributions to it are determined. The ranges of applicability of the results are indicated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Broadband Dielectric Spectroscopy and Its Advanced Technological Applications, Ed. by Yu. P. Kalmykov (Springer, Berlin, 2013).Google Scholar
  2. 2.
    Dielectric Relaxation in Biological Systems. Physical Principles, Methods, and Applications, Ed. by V. Raicu and Yu. Feldman (Oxford Univ. Press, Oxford, 2015).Google Scholar
  3. 3.
    P. J. Burke, in Encyclopedia of Nanoscience and Nanotechnology, Ed. by H. S. Nalwa and S. Ranch (American Scientific, CA, 2004), Vol. 6, p. 623.Google Scholar
  4. 4.
    R. Pethig, Dielectrophoresis. Theory, Methodology and Biological Applications (Wiley, Hoboken, NJ, 2017).CrossRefGoogle Scholar
  5. 5.
    A. Schadschneider, D. Chowdhury, and K. Nishinari, Stochastic Transport in Complex Systems: From Molecules to Vehicles (Elsevier, Amsterdam, 2010).zbMATHGoogle Scholar
  6. 6.
    D. Cubero and F. Renzoni, Brownian Ratchets: From Statistical Physics to Bio and Nanomotors (Cambridge Univ. Press, Cambridge, 2016).CrossRefGoogle Scholar
  7. 7.
    V. M. Rozenbaum, I. V. Shapochkina, S. H. Lin, and L. I. Trakhtenberg, JETP Lett. 105, 542 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    S. Saha and J. F. Stoddart, Chem. Soc. Rev. 36, 77 (2007).CrossRefGoogle Scholar
  9. 9.
    P. Hanggi and F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    V. M. Rozenbaum, M. L. Dekhtyar, S. H. Lin, and L. I. Trakhtenberg, J. Chem. Phys. 145, 064110 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Liu, K. Oh, J. B. Bai, C. L. Chang, W. Yeo, J. H. Chung, K. H. Lee, and W. K. Liu, Comp. Methods Appl. Mech. Eng. 197, 2156 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    Z. Nie, A. Petukhova, and E. Kumacheva, Nat. Nanotech. 5, 15 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    J. Kottmann, O. Martin, D. Smith, and S. Schultz, New J. Phys. 2, 27 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    M. Scanlon, P. Peljo, M. Mendez, E. Smirnov, and H. Girault, Chem. Sci. 6, 2705 (2015).CrossRefGoogle Scholar
  15. 15.
    M. A. Kozhushner, B. V. Lidskii, I. I. Oleynik, V. S. Posvyanskii, and L. I. Trakhtenberg, J. Phys. Chem. C 119, 16286 (2015).CrossRefGoogle Scholar
  16. 16.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984), Chap. 2.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. A. Kozhushner
    • 1
    Email author
  • B. V. Lidskii
    • 1
  • V. S. Posvyanskii
    • 1
  • L. I. Trakhtenberg
    • 1
    • 2
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Karpov Research Institute of Physical ChemistryMoscowRussia

Personalised recommendations