JETP Letters

, Volume 108, Issue 9, pp 571–576 | Cite as

Toward Defeating Diffraction and Randomness for Laser Beam Propagation in Turbulent Atmosphere

  • P. M. LushnikovEmail author
  • N. Vladimirova
Optics and Laser Physics


A large distance propagation in turbulent atmosphere results in disintegration of laser beam into speckles. We find that the most intense speckle approximately preserves both the Gaussian shape and the diameter of the initial collimated beam while loosing energy during propagation. One per 1000 of atmospheric realizations produces at 7 km distance an intense speckle above 28% of the initial power. Such optimal realizations create effective extended lenses focusing the intense speckle beyond the diffraction limit of vacuum propagation. Atmospheric realizations change every several milliseconds. We propose to use intense speckles to greatly increase the time-averaged power delivery to the target plane by triggering the pulsed laser operations only at times of optimal realizations. Resulting power delivery and laser irradiance at the intense speckles well exceeds both intensity of diffraction-limited beam and intensity averaged over typical realizations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Strohbehn, Laser Beam Propagation in the Atmosphere, Ed. by J. W. Strohbehn (Springer, New York, 1978).Google Scholar
  2. 2.
    V. I. Tatarskii, Wave Propagation in a Turbulent Medium, McGraw-Hill Series in Electrical Engineering (McGraw-Hill, New York, 1961).Google Scholar
  3. 3.
    V. I. Tatarskii, The Effects of the Turbulence Atmosphere on Wave Propagation (Israel Program Sci. Transl., Jerusalem, 1971).Google Scholar
  4. 4.
    L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, Vol. PM53 of SPIE Monograph Ser. (Int. Soc. Opt. Eng., Philadelphia, 1998).Google Scholar
  5. 5.
    S. L. Lachinova and M. A. Vorontsov, J. Opt. 18, 025608 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    M. A. Vorontsov, G. W. Carhart, V. S. R. Gudimetla, T. Weyrauch, E. Stevenson, S. L. Lachinova, L. A. Beresnev, J. Liu, K. Rehder, and J. F. Riker, in Proceedings of the 2010 Maui Optical and Space Surveillance Technologies (AMOS) Conference, Maui, Hawaii, 2010.Google Scholar
  7. 7.
    M. A. Vorontsov, V. R. Gudimetla, G. W. Carhart, T.Weyrauch, S. L. Lachinova, E. Polnau, J. R. L. A. Beresnev, J. Liu, and J. F. Riker, in Proceedings of the 2011 Maui Optical and Space Surveillance Technologies (AMOS) Conference, Maui, Hawaii, 2011.Google Scholar
  8. 8.
    A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).ADSCrossRefGoogle Scholar
  9. 9.
    J. A. Fleck, J. R. Morris, and M. D. Feit, Appl. Phys. 10, 129 (1976).ADSCrossRefGoogle Scholar
  10. 10.
    M. S. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 4: Wave Propagation through Random Media (Springer, Berlin, 1989).CrossRefzbMATHGoogle Scholar
  11. 11.
    I. M. Lifshitz, Sov. Phys. Usp. 7, 549 (1965).ADSCrossRefGoogle Scholar
  12. 12.
    L. N. Lipatov, Sov. Phys. JETP 45, 216 (1977).ADSGoogle Scholar
  13. 13.
    G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, Phys. Rev. E 54, 4896 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    M. Chertkov, Phys. Rev. E 55, 2722 (1997).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    T. Grafke, R. Grauer, and T. Schafer, J. Phys. A: Math. Theor. 48, 333001 (2015).CrossRefGoogle Scholar
  16. 16.
    G. E. Falkovich, I. Kolokolov, V. Lebedev, and S. K. Turitsyn, Phys. Rev. E 63, 025601(R) (2001).Google Scholar
  17. 17.
    P. M. Lushnikov and N. Vladimirova, Opt. Lett. 35, 1965 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    Y. Chung and P. M. Lushnikov, Phys. Rev. E 84, 036602 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    A. E. Siegman, Lasers (Univ. Sci. Books, Mill Valley, CA, 1986).Google Scholar
  20. 20.
    M. A. Vorontsov, V. V. Kolosov, and A. Kohnle, J. Opt. Soc. Am. A 24, 1975 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    A. I. Khizhnyak, and V. B. Markov, Proc. SPIE 8238, 82380K (2012).Google Scholar
  22. 22.
    S. L. Lachinova, M. A. Vorontsov, G. A. Filimonov, D. A. LeMaster, and M. E. Trippel, Opt. Eng. 56, 071509 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    A. P. Godlevsky, Y. D. Kopytin, and V. P. Aksenov, USSR Patent No. 950016 (1981).Google Scholar
  24. 24.
    I. A. Vaseva, M. P. Fedoruk, A. M. Rubenchik, and S. K. Turitsyn, Sci. Rep. 6, 30697 (2016).ADSCrossRefGoogle Scholar
  25. 25.
    S. N. Vlasov, V. A. Petrishchev, and V. I. Talanov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 14, 1353 (1971).Google Scholar
  26. 26.
    P. M. Lushnikov, S. A. Dyachenko, and N. Vladimirova, Phys. Rev. A 88, 013845 (2013).ADSCrossRefGoogle Scholar
  27. 27.
    P. M. Lushnikov and N. Vladimirova, Opt. Lett. 39, 3429 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    P. M. Lushnikov and N. Vladimirova, Opt. Express 23, 31120 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    T. Weyrauch, M. Vorontsov, J. Mangano, V. Ovchinnikov, D. Bricker, E. Polnau, and A. Rostov, Opt. Lett. 41, 840 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Department of Mathematics and StatisticsUniversity of New MexicoWashingtonUSA

Personalised recommendations