Advertisement

JETP Letters

, Volume 108, Issue 8, pp 532–536 | Cite as

Neutron Spectroscopy of the Atomic Dynamics of La2Zr2O7 at Fluorite–Pyrochlore Structural Transformations

  • P. S. SavchenkovEmail author
  • E. A. Goremychkin
  • V. V. Popov
  • B. L. Shapir
  • P. A. Borisova
  • A. A. Yastrebtsev
  • B. R. Gaynanov
  • M. P. Krasnov
  • A. P. Menushenkov
  • P. A. Alekseev
Condensed Matter
  • 16 Downloads

Abstract

The formation of the structural and dynamic properties of La2Zr2O7 in the process of crystallization at the isothermal annealing of initially amorphous precursors obtained by the coprecipitation of corresponding salts has been studied by neutron spectroscopy. The existence of vibrational states characteristic of hydrogen, which is in one or another of the possible chemical states and is incorporated into a solid matrix, has been detected in the spectra of amorphous and fluorite phases. The DFT calculation of the phonon density of states has been performed to analyze the energy structure of experimental phonon spectra for various phases of the La2Zr2O7 compound. The amount of hydrogen in the fluorite phase has been estimated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. R. Andrievskaya, J. Eur. Ceram. Soc. 28, 2363 (2008).CrossRefGoogle Scholar
  2. 2.
    A. V. Radha, S. V. Ushakov, and A. J. Navrotsky, Mater. Res. 24, 3350 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    H. Yamamura, H. Nishino, and K. Kakinuma, Solid State Ionics 158, 359 (2003).CrossRefGoogle Scholar
  4. 4.
    J. Gardner, M. Gingras, and J. Greedan, Rev. Mod. Phys. 82, 53 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    M. Subramanian, G. Aravamudan, and G. Subba Rao, Prog. Solid State Chem. 15, 55 (1983).CrossRefGoogle Scholar
  6. 6.
    P. Blanchard, R. Clements, B. Kennedy, C. Ling, E. Reynolds, M. Avdeev, A. Stampfl, Z. Zhang, and L.-Y. Jang, Inorg. Chem. 51, 13237 (2012).CrossRefGoogle Scholar
  7. 7.
    G. Qu, W. Liu, L. Yao, H. Wu, and W. Pan, J. Mater. Chem. 2, 1855 (2014).CrossRefGoogle Scholar
  8. 8.
    V. V. Popov and A. A. Pisarev, Materials and Processes of Production of Heat Protective Coatings (NIYaU MIFI, Moscow, 2016) [in Russian].Google Scholar
  9. 9.
    V. V. Popov, A. P. Menushenkov, B. R. Gaynanov, Ya. V. Zubavichus, R. D. Svetogorov, A. A. Yastrebtsev, A. A. Pisarev, L. A. Arzhatkina, and K. V. Ponkratov, J. Phys.: Conf. Ser. 941, 012079 (2017).Google Scholar
  10. 10.
    B. Paul, K. Singh, T. Jaron, A. Roy, and A. Chowdhury, J. Alloys Compd. 686, 130 (2016).CrossRefGoogle Scholar
  11. 11.
    K. E. Sickafus, R. W. Grimes, J. A. Valdez, A. Cleave, M. Tang, M. Ishimaru, S. M. Corish, C. R. Stanek, and B. P. Uberuaga, Nat. Mater. 6, 217 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    A. P. Menushenkov, V. V. Popov, B. R. Gaynanov, and Ya. V. Zubavichus, J. Phys.: Conf. Ser. 747, 012038 (2016).Google Scholar
  13. 13.
    G. S. Burkhanov, N. B. Kol’chugina, A. A. Lukin, Yu. S. Koshkidbko, Ya. Tsvik, K. Skotnitsova, and V. V. Sitnikov, Fiz. Khim. Obrab. Mater., No. 5, 44 (2017).Google Scholar
  14. 14.
    K. Toyoura, A. Nakamura, and K. Matsunaga, J. Phys. Chem. C 119, 8480 (2015).CrossRefGoogle Scholar
  15. 15.
    M. E. Björketun, C. S. Knee, B. J. Nyman, and G. Wahnström, Solid State Ionics 178, 1642 (2008).CrossRefGoogle Scholar
  16. 16.
    P. P. Parshin, M. G. Zemlyanov, A. V. Irodova, and V. V. Sumin, Phys. Solid State 40, 676 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    V. V. Popov, Ya. V. Zubavichus, A. P. Menushenkov, A. A. Yaroslavtsev, E. S. Kulik, V. F. Petrunin, S. A. Korovin, and N. N. Trofimova, Russ. J. Inorg. Chem. 59, 279 (2014).CrossRefGoogle Scholar
  18. 18.
    V. V. Popov, A. P. Menushenkov, A. A. Yaroslavtsev, Ya. V. Zubavichus, B. R. Gaynanov, A. A. Yastrebsev, D. S. Leshchev, and R. V. Chernikov, J. Alloys Compd. 689, 669 (2016).CrossRefGoogle Scholar
  19. 19.
    I. Natkaniec, D. Chudoba, V. Y. Kazimirov, J. Krawczyk, I. L. Sashin, and S. Zalewski, J. Phys.: Conf. Ser. 554, 012002 (2014).Google Scholar
  20. 20.
    I. V. Kalinin, V. M. Morozov, A. G. Novikov, A. V. Puchkov, V. V. Savostin, V. V. Sudarev, A. P. Bulkin, S. I. Kalinin, V. M. Pusenkov, and V. A. Ul’yanov, Tech. Phys. 59, 307 (2014).CrossRefGoogle Scholar
  21. 21.
    M. G. Zemlyanov, I. V. Krylov, and P. P. Parshin, J. Exp. Theor. Phys. 77, 148 (1993).ADSGoogle Scholar
  22. 22.
    P. P. Parshin and M. G. Zemlyanov, Fiz. Tverd. Tela 40 (4), 57 (1998).Google Scholar
  23. 23.
    M. A. Marques, M. I. de Barros Marques, M. I. Cabaco, A. M. Gaspar, M. P. M. Marques, A. M. Amado, and A. A. da Costa, J. Mol. Liq. 134, 142 (2007).CrossRefGoogle Scholar
  24. 24.
    P. P. Parshin, M. G. Zemlyanov, M. E. Kost, A. Yu. Rumyantsev, and N. A. Chernoplekov, Izv. Akad. Nauk SSSR, Ser. Neorg. Mater. 14, 1653 (1978).Google Scholar
  25. 25.
    V. Crupi, D. Majolino, P. Migliardo, V. Venuti, and A. J. Dianoux, Appl. Phys. A 74, 555 (2002).ADSCrossRefGoogle Scholar
  26. 26.
    V. P. Glazkov, I. V. Naumov, and S. Sh. Shilshtein, Nucl. Instrum. Methods Phys. Res., Sect. A 264, 369 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • P. S. Savchenkov
    • 1
    • 2
    Email author
  • E. A. Goremychkin
    • 3
  • V. V. Popov
    • 1
    • 2
  • B. L. Shapir
    • 2
  • P. A. Borisova
    • 2
  • A. A. Yastrebtsev
    • 1
  • B. R. Gaynanov
    • 1
  • M. P. Krasnov
    • 1
  • A. P. Menushenkov
    • 1
  • P. A. Alekseev
    • 1
    • 2
  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.National Research Center Kurchatov InstituteMoscowRussia
  3. 3.Frank Laboratory of Neutron PhysicsJoint Institute for Nuclear ResearchDubna, Moscow regionRussia

Personalised recommendations