Advertisement

JETP Letters

, Volume 108, Issue 8, pp 537–542 | Cite as

Magnetic State of Iron Impurity Ions in In2O3

  • M. A. KorotinEmail author
  • A. O. Anokhin
  • I. S. Zhidkov
  • A. I. Kukharenko
  • S. O. Cholakh
  • N. V. Gavrilov
  • V. I. Brinzari
  • E. Z. Kurmaev
Condensed Matter
  • 6 Downloads

Abstract

X-ray photoelectron spectroscopy and electronic structure calculations in the framework of the coherent potential approach show that impurity Fe3+ ions substituting In in iron-doped In2O3 indium oxide(III) are in a paramagnetic state in the absence of oxygen vacancies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Walsh, J. L. F. da Silva, S.-H. Wei, C. Körber, A. Klein, L. F. J. Piper, A. de Masi, K. E. Smith, G. Panaccione, P. Torelli, D. J. Payne, A. Bourlange, and R. G. Egdell, Phys. Rev. Lett. 100, 167402 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    P. D. C. King, T. D. Veal, F. Fuchs, Ch. Y. Wang, D. J. Payne, A. Bourlange, H. Zhang, G. R. Bell, V. Cimalla, O. Ambacher, R. G. Egdell, F. Bechstedt, and C. F. McConville, Phys. Rev. B 79, 205211 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    J. Philip, A. Punnoose, B. I. Kim, K. M. Reddy, S. Layne, J. O. Holmes, B. Satpati, P. R. le Clair, T. S. Santos, and J. S. Moodera, Nat. Mater. 5, 298 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    T. Dietl and H. Ohno, Rev. Mod. Phys. 86, 187 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    Y. K. Yoo, Q. Z. Xue, H. C. Lee, S. F. Cheng, X. D. Xiang, G. F. Dionne, S. F. Xu, J. He, Y. S. Chu, S. D. Preite, S. E. Lofland, and I. Takeuchi, Appl. Phys. Lett. 86, 042506 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    O. D. Jayakumar, I. K. Gopalakrishnan, S. K. Kulshreshtha, A. Gupta, K. V. Rao, D. V. Louzguine-Luzgin, A. Inoue, P. A. Glans, J. H. Guo, K. Samanta, M. K. Singh, and R. S. Katiyar, Appl. Phys. Lett. 91, 052504 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    N. Sai Krishna, S. Kaleemulla, G. Amarendra, N. Madhusudhana Rao, C. Krishnamoorthi, M. Kuppan, M. Rigana Begam, D. SreekanthaReddy, and I. Omkaram, Mater. Res. Bull. 61, 486 (2015).CrossRefGoogle Scholar
  8. 8.
    D. Berardan and E. Guilmeau, J. Phys.: Condens. Matter 19, 236224 (2007).ADSGoogle Scholar
  9. 9.
    P. F. Xing, Y. X. Chen, S. S. Yan, G. L. Liu, L. M. Mei, and Z. Zhang, J. Appl. Phys. 106, 043909 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    S. Kohiki, M. Sasaki, Y. Murakawa, K. Hori, K. Okada, H. Shimooka, T. Tajiri, H. Deguchi, S. Matsushima, M. Oku, T. Shishido, M. Arai, M. Mitome, and Y. Bando, Thin Solid Films 505, 122 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    Shu-jun Hu, Shi-shen Yan, Xue-ling Lin, Xin-xin Yao, Yan-xue Chen, Guo-lei Liu, and Liang-mo Mei, Appl. Phys. Lett. 91, 262514 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    L. X. Guan, J. G. Tao, Z. R. Xiao, B. C. Zhao, X. F. Fan, C. H. A. Huan, J. L. Kuo, and L. Wang, Phys. Rev. B 79, 184412 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    G. Korotcenkov, A. Cerneavschi, V. Brinzari, A. Cornet, J. Morante, A. Cabot, and J. Arbiol, Sens. Actuators, B 84, 37 (2002).CrossRefGoogle Scholar
  14. 14.
    G. Korotcenkov, V. Brinzari, A. Cerneavschi, M. Ivanov, V. Golovanov, A. Cornet, J. Morante, A. Cabot, and J. Arbiol, Thin Solid Films 460, 315 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    N. V. Gavrilov and E. M. Oks, Nucl. Instrum. Methods Phys. Res., Sect. A 439, 31 (2000).ADSCrossRefGoogle Scholar
  16. 16.
  17. 17.
    X.-H. Xu, F.-X. Jiang, J. Zhang, X.-Ch. Fan, H.-Sh. Wu, and G. A. Gehring, Appl. Phys. Lett. 94, 212510 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    J. J. Meléndez and M. Wierzbowska, J. Phys. Chem. C 120, 4007 (2016).CrossRefGoogle Scholar
  19. 19.
    O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).ADSCrossRefGoogle Scholar
  20. 20.
    Z. H. Levine and D. C. Allan, Phys. Rev. Lett. 63, 1719 (1989).ADSCrossRefGoogle Scholar
  21. 21.
    P. Soven, Phys. Rev. 156, 809 (1967).ADSCrossRefGoogle Scholar
  22. 22.
    M. A. Korotin, N. A. Skorikov, and A. O. Anokhin, Phys. B 526, 14 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    A. J. Pindor, J. Staunton, G. M. Stocks, and H. Winter, J. Phys. F 13, 979 (1983).ADSCrossRefGoogle Scholar
  24. 24.
    V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A. Nekrasov, Z. V. Pchelkina, J. W. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, and D. Vollhardt, Phys. Rev. B 71, 125119 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    M. A. Korotin, N. A. Skorikov, S. L. Skornyakov, A. O. Shorikov, and V. I. Anisimov, JETP Lett. 100, 823 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    R. Zimmermann, P. Steiner, R. Claessen, F. Reinert, S. Hüfner, P. Blaha, and P. Dufek, J. Phys.: Condens. Matter 11, 1657 (1999).ADSGoogle Scholar
  27. 27.
    X. Gao, D. Qi, S. C. Tan, A. Wee, X. Yu, and H. O. Moser, J. Electron Spectrosc. Relat. Phenom. 151, 199 (2006).CrossRefGoogle Scholar
  28. 28.
    Sh. Yan, W. Qiao, W. Zhong, Ch.-T. Au, and Y. Dou, Appl. Phys. Lett. 104, 062404 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. A. Korotin
    • 1
    Email author
  • A. O. Anokhin
    • 1
  • I. S. Zhidkov
    • 2
  • A. I. Kukharenko
    • 2
  • S. O. Cholakh
    • 2
  • N. V. Gavrilov
    • 3
  • V. I. Brinzari
    • 4
  • E. Z. Kurmaev
    • 1
    • 2
  1. 1.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Physics and TechnologyUral Federal UniversityYekaterinburgRussia
  3. 3.Institute of Electrophysics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  4. 4.Pokatilov Laboratory of Physics and Engineering of Nanomaterials, Department of Theoretical PhysicsMoldova State UniversityChişinăuMoldova

Personalised recommendations