JETP Letters

, Volume 108, Issue 8, pp 527–531 | Cite as

Mössbauer Spectroscopy Study of the Superparamagnetism of Ultrasmall ϵ-Fe2O3 Nanoparticles

  • Yu. V. KnyazevEmail author
  • D. A. Balaev
  • V. L. Kirillov
  • O. A. Bayukov
  • O. N. Mart’yanov
Condensed Matter


The superparamagnetism of an ensemble of ϵ-Fe2O3 nanoparticles with a mean size of 3.9 nm dispersed in a xerogel SiO2 matrix is studied by the Mössbauer spectroscopy method. It is shown that most nanoparticles at room temperature are in the superparamagnetic (unblocked) state. As the temperature decreases, the progressive blocking of the magnetic moments of the particles occurs, which is manifested in the Mössbauer spectra as the transformation of the quadrupole doublet into a Zeeman sextet. The analysis of the relative intensity of the superparamagnetic (quadrupole doublet) and magnetically split (sextets) spectral components in the range of 4–300 K provides the particle size distribution, which is in agreement with the transmission electron microscopy data. The values of the effective magnetic anisotropy constants (Keff) are determined, and the contribution of surface anisotropy (KS) is estimated for particles of various sizes. It is shown that the quantity Keff is inversely proportional to the particle size, which indicates the significant contribution of the surface to the magnetic state of the ϵ-Fe2O3 nanoparticles with the size of several nanometers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Mörup and H. Topsoe, Appl. Phys. 11, 63 (1976).ADSCrossRefGoogle Scholar
  2. 2.
    F. Bödker, S. Mörup, and S. Linderoth, Phys. Rev. Lett. 72, 282 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    F. Bödker and S. Mörup, Europhys. Lett. 52, 217 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    I. P. Suzdalev, Solid State Phys. 12, 988 (1970).Google Scholar
  5. 5.
    J. L. Dormann, L. Bessais, and D. Fiorani, J. Phys. C: Solid State Phys. 21, 2015 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    M. Gich, A. Roig, C. Frontera, and E. Molins, J. Appl. Phys. 98, 044307 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    J. M. D. Coey and D. Khalafalla, Phys. Status Solidi A 11, 229 (1972).ADSCrossRefGoogle Scholar
  8. 8.
    M. Popovici, M. Gich, D. Nižnanský, A. Roig, C. Savii, L. Casas, E. Molins, K. Zaveta, C. Enache, J. Sort, S. de Brion, G. Chouteau, and Jo. Nogués, Chem. Mater. 16, 5542 (2004).CrossRefGoogle Scholar
  9. 9.
    A. A. Dubrovskiy, D. A. Balaev, K. A. Shaykhutdinov, O. A. Bayukov, O. N. Pletnev, S. S. Yakushkin, G. A. Bukhtiyarova, and O. N. Martyanov, J. Appl. Phys. 118, 213901 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    M. Gich, C. Frontera, A. Roig, E. Taboada, E. Molins, H. R. Rechenberg, J. D. Ardisson, W. A. A. Macedo, S. Ritter, V. Hardy, J. Sort, V. Skumryev, and J. Nogués, Chem. Mater. 18, 3889 (2006).CrossRefGoogle Scholar
  11. 11.
    D. A. Balaev, S. V. Semenov, A. A. Dubrovskiy, S. S. Yakushkin, V. L. Kirillov, and O. N. Martyanov, J. Magn. Magn. 440, 199 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    J. L. Garcia-Muñoz, A. Romaguera, F. Fauth, J. Nogués, and M. Gich, Chem. Mater. 29, 9705 (2017).CrossRefGoogle Scholar
  13. 13.
    E. Tronc, C. Chaneac, and J. P. Jolivet, J. Solid State Chem. 139, 93 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    I. Dezsi and J. M. D. Coey, Phys. Status Solidi A 16, 681 (1973).ADSCrossRefGoogle Scholar
  15. 15.
    A. I. Dmitriev, O. V. Koplak, A. Namai, H. Tokoro, S. Ohkoshi, and R. B. Morgunov, Phys. Solid State 56, 1795 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    Sh. Ohkoshi, Dr. A. Namai, M. Yoshikiyo, Dr. K. Imoto, K. Tamazaki, K. Matsuno, O. Inoue, T. Ide, K. Masada, M. Goto, T. Goto, T. Yoshida, and T. Miyazaki, Angew. Chem. 128, 11575 (2016).CrossRefGoogle Scholar
  17. 17.
    J. Kohout, P. Brázda, K. Záweta, D. Kubániová, T. Kmjec, L. Kubicková, M. Klementová, E. Šantavá, and A. Lancok, J. Appl. Phys. 117, 17D505 (2015).CrossRefGoogle Scholar
  18. 18.
    S. S. Yakushkin, D. A. Balaev, A. A. Dubrovskiy, S. V. Semenov, Yu. V. Knyazev, O. A. Bayukov, V. L. Kirillov, R. D. Ivantsov, I. S. Edelman, and O. N. Martyanov, Ceram. Int. 44, 17852 (2018).CrossRefGoogle Scholar
  19. 19.
    A. M. Afanas’ev and M. A. Chuev, JETP Lett. 74, 107 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    M. A. Chuev, JETP Lett. 98, 465 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    W. Kündig and H. Bömmel, Phys. Rev. 142, 327 (1966).ADSCrossRefGoogle Scholar
  22. 22.
    D. A. Balaev, I. S. Poperechny, A. A. Krasikov, K. A. Shaikhutdinov, A. A. Dubrovskiy, S. I. Popkov, A. D. Balaev, S. S. Yakushkin, G. A. Bukhtiyarova, O. N. Martyanov, and Yu. L. Raikher, J. Appl. Phys. 117, 063908 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Yu. V. Knyazev
    • 1
    Email author
  • D. A. Balaev
    • 1
  • V. L. Kirillov
    • 2
  • O. A. Bayukov
    • 1
  • O. N. Mart’yanov
    • 2
  1. 1.Kirensky Institute of Physics, Federal Research Center KSC, Siberian BranchRussian Academy of SciencesAkademgorodok, KrasnoyarskRussia
  2. 2.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations