Advertisement

JETP Letters

, Volume 108, Issue 8, pp 504–507 | Cite as

Cumulative Protons in Collisions between Carbon and Beryllium Nuclei at Energies of 0.60, 0.95, and 2.0 GeV/nucleon

  • A. Ya. Berdnikov
  • Ya. A. Berdnikov
  • V. S. Borisov
  • D. O. Kotov
  • D. M. Larionova
  • M. M. Larionova
  • Yu. M. Mitrankov
  • V. N. Solov’ev
Fields, Particles, and Nuclei
  • 7 Downloads

Abstract

Collisions between carbon and beryllium nuclei at initial kinetic energies of carbon nuclei of 0.6, 0.95, and 2.0 GeV/nucleon have been simulated within the Liège intranuclear cascade model. Invariant proton production cross sections at an angle of 3.5° have been determined. It has been shown that the dependence of experimental invariant proton production cross sections on the cumulative variable can be explained in terms of Fermi processes of motion of nucleons in a nucleus, multiple scattering, and production of delta resonances. Results of simulation have been compared to experimental data and results obtained within the quark cluster model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Efremov, Sov. J. Part. Nucl. 13, 254 (1982).Google Scholar
  2. 2.
    V. S. Stavinskii, Sov. J. Part. Nucl. 10, 373 (1979).Google Scholar
  3. 3.
    V. S. Stavinskii, Kratk. Soobshch. OIYaI 18 (86), 5 (1986).Google Scholar
  4. 4.
    B. M. Abramov, P. N. Alekseev, Yu. A. Borodin, S. A. Bulychjov, I. A. Dukhovskii, A. P. Krutenkova, V. V. Kulikov, M. A. Martem’yanov, M. A. Matsyuk, E. N. Turdakina, and A. I. Khanov, JETP Lett. 97, 439 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    G. A. Leksin, Sov. Phys. JETP 5, 371 (1957).Google Scholar
  6. 6.
    L. S. Azhgirei, I. K. Vzorov, V. P. Zrelov, M. G. Meshcheriakov, B. S. Neganov, and A. F. Shabudin, Sov. Phys. JETP 6, 911 (1958).ADSGoogle Scholar
  7. 7.
    D. I. Blokhintsev, Sov. Phys. JETP 6, 995 (1958).ADSGoogle Scholar
  8. 8.
    A. M. Baldin, Kratk. Soobshch. Fiz. 1 (5), 35 (1971).Google Scholar
  9. 9.
    Yu. D. Bayukov, L. S. Vorob’ev, G. A. Leksin, V. L. Stolin, V. B. Fedorov, and V. D. Khovanskii, Sov. J. Nucl. Phys. 18, 639 (1973).Google Scholar
  10. 10.
    M. I. Strikman and L. L. Frankfurt, Fiz. Elem. Chastits At. Yadra 1 (3), 572 (1980).Google Scholar
  11. 11.
    A. Tang, J. W. Watson, J. Aclander, et al., Phys. Rev. Lett. 90, 042301 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    A. Tang, J. W. Watson, J. Alster, et al., AIP Conf. Proc. 549, 451 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    B. M. Abramov, P. N. Alexeev, Yu. A. Borodin, S. A. Bulychjov, I. A. Dukhovskoy, A. B. Kaidalov, A. P. Krutenkova, V. V. Kulikov, M. A. Martemianov, M. A. Matsyuk, E. N. Turdakina, and A. I. Khanov, Bull. Russ. Acad. Sci.: Phys. 75, 500 (2011).CrossRefGoogle Scholar
  14. 14.
    A. V. Efremov, A. B. Kaidalov, V. T. Kim, G. I. Lykasov, and N. V. Slavin, Sov. J. Nucl. Phys. 47, 1364 (1988).Google Scholar
  15. 15.
    S. Pedoux, A. Boudard, J. Cugnon, J.-C. David, S. Leray, and D. Mancusi, Adv. Space Res. 48, 383 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    Th. Aoust and J. Cugnon, Phys. Rev. C 74, 064607 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    A. Baldini, V. Flaminio, W. G. Moorhead, and D. R. O. Morrison, New Ser. Group 1, 12 (1988).Google Scholar
  18. 18.
    D. Mancusi, A. Boudard, J. Cugnon, J.-C. David, P. Kaitaniemi, and S. Leraye, Phys. Rev. C 90, 054602 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. Ya. Berdnikov
    • 1
  • Ya. A. Berdnikov
    • 1
  • V. S. Borisov
    • 1
  • D. O. Kotov
    • 1
  • D. M. Larionova
    • 1
  • M. M. Larionova
    • 1
  • Yu. M. Mitrankov
    • 1
  • V. N. Solov’ev
    • 1
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations