Advertisement

JETP Letters

, Volume 108, Issue 7, pp 492–497 | Cite as

High Quality Factor Mechanical Resonance in a Silicon Nanowire

  • D. E. Presnov
  • S. G. Kafanov
  • A. A. Dorofeev
  • I. V. Bozhev
  • A. S. Trifonov
  • Yu. A. PashkinEmail author
  • V. A. Krupenin
Condensed Matter

Abstract

Resonance properties of nanomechanical resonators based on doubly clamped silicon nanowires, fabricated from silicon-on-insulator and coated with a thin layer of aluminum, were experimentally investigated. Resonance frequencies of the fundamental mode were measured at a temperature of 20 mK for nanowires of various sizes using the magnetomotive scheme. The measured values of the resonance frequency agree with the estimates obtained from the Euler–Bernoulli theory. The measured internal quality factor of the 5 μm-long resonator, 3.62 × 104, exceeds the corresponding values of similar resonators investigated at higher temperatures. The structures presented can be used as mass sensors with an expected sensitivity ~6 × 10−20 g Hz–1/2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. L. Ekinci and M. L. Roukes, Rev. Sci. Instrum. 76, 061101 (2005). doi 10.1063/1.1927327ADSCrossRefGoogle Scholar
  2. 2.
    W.-M. Zhang, K.-M. Hu, Z. K. Peng, and G. Meng, Sensors 15, 26478 (2015). doi 10.3390/s151026478CrossRefGoogle Scholar
  3. 3.
    B. Arash, J.-W. Jiang, and T. Rabczuk, Appl. Phys. Rev. 2, 021301 (2015). doi 10.1063/1.4916728ADSCrossRefGoogle Scholar
  4. 4.
    Y. Greenberg, Yu. A. Pashkin, and E. V. Ilichev, Phys. Usp. 55, 1382 (2012). doi 10.3367/UFNr.0182.201204c.0407CrossRefGoogle Scholar
  5. 5.
    V. V. Shorokhov, D. E. Presnov, S. V. Amitonov, Yu. A. Pashkin, and V. A. Krupenin, Nanoscale 9, 613 (2017). doi 10.1039/C6NR07258ECrossRefGoogle Scholar
  6. 6.
    G. Lovat, B. Choi, D.W. Paley, M. L. Steigerwald, L. Venkataraman, and X. Roy, Nat. Nanotechnol. 12, 1050 (2017). doi 10.1038/nnano.2017.156ADSCrossRefGoogle Scholar
  7. 7.
    E. S. Soldatov, V. V. Khanin, A. S. Trifonov, S. P. Gubin, V. V. Kolesov, D. E. Presnov, S. A. Iakovenko, G. B. Khomutov, and A. N. Korotkov, Phys. Usp. 41, 202 (1998). doi 10.1070/PU1998v041n02ABEH000364ADSCrossRefGoogle Scholar
  8. 8.
    S. T. Bartsch, M. Arp, and A. M. Ionescu, IEEE J. Electron Dev. Soc. 2 (2), 8 (2014). doi 10.1109/JEDS.2013.2295246CrossRefGoogle Scholar
  9. 9.
    B. Ilic, Y. Yang, and H. G. Craighead, Appl. Phys. Lett. 85, 2604 (2004). doi 10.1063/1.1794378ADSCrossRefGoogle Scholar
  10. 10.
    H. Mamin and D. Rugar, Appl. Phys. Lett. 79, 3358 (2001). doi 10.1063/1.1418256ADSCrossRefGoogle Scholar
  11. 11.
    X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, and A. Q. Liu, Opt. Express 20, 8535 (2012). doi 10.1364/OE.20.008535ADSCrossRefGoogle Scholar
  12. 12.
    R. G. Knobel and A. N. Cleland, Nature (London, U.K.) 424, 291 (2003). doi 10.1038/nature01773ADSCrossRefGoogle Scholar
  13. 13.
    A. A. Shevyrin, A. G. Pogosov, M. V. Budantsev, A. K. Bakarov, A. I. Toropov, E. E. Rodyakina, and A. A. Shklyaev, Appl. Phys. Lett. 106, 183110 (2015). doi 10.1063/1.4920932ADSCrossRefGoogle Scholar
  14. 14.
    A. Naik, O. Buu, M. D. LaHaye, A. D. Armour, A. A. Clerk, M. P. Blencowe, and K. C. Schwab, Nature (London, U.K.) 443, 193 (2006). https://www.nature.com/articles/nature05027.ADSCrossRefGoogle Scholar
  15. 15.
    J. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Wittaker, K. W. Lehnert, and R. W. Simmonds, Nature (London, U.K.) 475, 359 (2011). https://www.nature.com/articles/ nature10261ADSCrossRefGoogle Scholar
  16. 16.
    K. Harrabi, Yu. A. Pashkin, O. V. Astafiev, S. Kafanov, T. F. Li, and J. S. Tsai, Appl. Phys. A 108, 7 (2012). doi 10.1007/s00339-012-6981-8ADSCrossRefGoogle Scholar
  17. 17.
    D. I. Bradley, R. George, A. M. Guénault, R. P. Haley, S. Kafanov, M. T. Noble, Yu. A. Pashkin, G. R. Pickett, M. Poole, J. R. Prance, M. Sarsby, R. Schanen, V. Tsepelin, T. Wilcox, and D. E. Zmeev, Sci. Rep. 7, 4876 (2017). doi 10.1038/s41598-017-04842-yADSCrossRefGoogle Scholar
  18. 18.
    D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, Appl. Phys. Lett. 75, 920 (1999). doi 10.1063/1.124554ADSCrossRefGoogle Scholar
  19. 19.
    K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, Appl. Phys. Lett. 84, 4469 (2004). doi 10.1063/1.1755417ADSCrossRefGoogle Scholar
  20. 20.
    A. N. Cleland and M. L. Roukes, Appl. Phys. Lett. 69, 2653 (1996). doi 10.1063/1.117548ADSCrossRefGoogle Scholar
  21. 21.
    K. Mori, in Silicon-On-Insulator (SOI) Technology (Woodhead, Singapore, 2014), Chap. 14, p. 435. doi 10.1533/9780857099259.2.435Google Scholar
  22. 22.
    D. E. Presnov, S. V. Amitonov, P. A. Krutitskii, V. V. Kolybasova, I. A. Devyatov, V. A. Krupenin, and I. I. Soloviev, Beilstein J. Nanotechnol. 4, 330 (2013). doi 10.3762/bjnano.4.38CrossRefGoogle Scholar
  23. 23.
    D. E. Presnov, S. V. Amitonov, and V. A. Krupenin, Russ. Microelectron. 41, 364 (2012). doi 10.1134/S1063739712050034CrossRefGoogle Scholar
  24. 24.
    M. Rubtsova, G. Presnova, D. Presnov, V. Krupenin, V. Grigorenko, and A. Egorov, in Proceedings of the Congress on Biosensors 2016, May 25–27, Gothenburg, Sweden, Proc. Technol. 27, 234 (2017). doi 10.1016/j.protcy.2017.04.099Google Scholar
  25. 25.
    A. S. Trifonov, D. E. Presnov, I. V. Bozhev, D. A. Evplov, V. Desmaris, and V. A. Krupenin, Ultramicroscopy 179, 33 (2017). doi 10.1016/j.ultramic.2017.03.030CrossRefGoogle Scholar
  26. 26.
    A.N. Cleland, Foundations of Nanomechanics (Springer, Berlin, 2003). doi 10.1007/978-3-662-05287-710.1007/978-3-662-05287-7CrossRefGoogle Scholar
  27. 27.
    A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations (Wiley–VCH, Weinheim, 2007). doi 10.1002/9783527617586zbMATHGoogle Scholar
  28. 28.
    H. W. Ch. Postma, I. Kozinsky, A. Husain, and M. L. Roukes, Appl. Phys. Lett. 86, 223105 (2005). doi 10.1063/1.1929098ADSCrossRefGoogle Scholar
  29. 29.
    F. Tajaddodianfar, M. R. H. Yazdi, and H. N. Pishkenari, Microsyst. Technol. 23, 1913 (2017). doi 10.1007/s00542-016-2947-7CrossRefGoogle Scholar
  30. 30.
    L. Laurent, J. J. Yon, J. S. Moulet, P. Imperinetti, and L. Duraffourg, Sens. Actuators, A 263, 326 (2017). doi 10.1016/j.sna.2017.06.027CrossRefGoogle Scholar
  31. 31.
    T. F. Li, Yu. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, Appl. Phys. Lett. 92, 043112 (2008). doi 10.1063/1.2838749ADSCrossRefGoogle Scholar
  32. 32.
    E. Buks and B. Yurke, Phys. Rev. E 74, 046619 (2017). doi 10.1103/PhysRevE.74.046619ADSCrossRefGoogle Scholar
  33. 33.
    A. N. Cleland and M. L. Roukes, Sens. Actuators 72, 256 (1999). doi 10.1016/S0924-4247(98)00222-2CrossRefGoogle Scholar
  34. 34.
    L. Yu, H. Pajouhi, M. R. Nelis, J. F. Rhoads, and S. Mohammadi, IEEE Trans. Nanotechnol. 11, 1093 (2012). doi 10.1109/TNANO.2012.2212028ADSCrossRefGoogle Scholar
  35. 35.
    G. Zolfagharkhani, A. Gaidarzhy, S. Shim, R. L. Badzey, and P. Mohanty, Phys. Rev. B 72, 224101 (2005). doi 10.1103/PhysRevB.72.224101ADSCrossRefGoogle Scholar
  36. 36.
    J. Sulkko, M. Sillanpää, P. Häkkinen, L. Lechner, M. Helle, A. Fefferman, J. Parpia, and P. Hakonen, Nano Lett. 10, 4884 (2010). doi 10.1021/nl102771pADSCrossRefGoogle Scholar
  37. 37.
    F. Hoehne, Yu. A. Pashkin, O. Astafiev, L. Faoro, L. B. Ioffe, Y. Nakamura, and J. S. Tsai, Phys. Rev. B 81, 184112 (2010). doi 10.1103/PhysRevB.81.184112ADSCrossRefGoogle Scholar
  38. 38.
    M. Imboden and P. Mohanty, Phys. Rev. B 79, 125424 (2009). doi 10.1103/PhysRevB.79.125424ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • D. E. Presnov
    • 1
    • 2
  • S. G. Kafanov
    • 3
  • A. A. Dorofeev
    • 1
  • I. V. Bozhev
    • 1
  • A. S. Trifonov
    • 1
    • 2
  • Yu. A. Pashkin
    • 3
    • 4
    Email author
  • V. A. Krupenin
    • 1
  1. 1.Quantum Technology Centre, Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  3. 3.Department of PhysicsLancaster UniversityLancasterUnited Kingdom
  4. 4.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations