Advertisement

Synthesis and Growth Mechanism of Ultra-long ZnO Nanocombs and Nanobelts on Cu Substrate

Article
  • 3 Downloads

Abstract

We successfully synthesized ultra-long ZnO nanocombs and nanobelts on Cu substrate for the first time. The morphology and structure of the as-grown ZnO nanocombs and nanobelts were characterized by means of scanning electron microscopy and X-ray diffraction. Scanning electron microscopy images show that Cu substrate is red and not oxidized, X-ray diffraction studies support Cu is present during the growth process, and we explained the growth mechanism for ultra-long ZnO nanostructures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Yang, H. Yan, and S. Mao, Adv. Funct. Mater. 12, 323 (2010).CrossRefGoogle Scholar
  2. 2.
    J. Y. Lao, J. Y. Huang, and D. Z. Wang, Nano Lett. 3, 235 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    R. Yousefi, Crystengcomm. 17, 2698 (2015).CrossRefGoogle Scholar
  4. 4.
    Y. Qiu, K. Yan, H. Deng, and S. Yang, Nano Lett. 12, 407 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    R. Dalvand, S. Mahmud, J. Rouhi, and C. H. R. Ooi, Mater. Lett. 146, 65 (2015).CrossRefGoogle Scholar
  6. 6.
    W. L. Ong, S. Natarajan, B. Kloostra, and G. W. Ho, Nanoscale 5, 5568 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    K. N. Devi, W. J. Singh, and K. J. Singh, J. Mater. Sci. Mater. Electron. 28, 8211 (2017).CrossRefGoogle Scholar
  8. 8.
    R. K. Sonker, S. R. Sabhajeet, and S. Singh, Mater. Lett. 152, 189 (2015).CrossRefGoogle Scholar
  9. 9.
    J. Y. Park, S. W. Choi, and K. Asokan, J. Am. Ceram. Soc. 93, 3190 (2010).CrossRefGoogle Scholar
  10. 10.
    L. X. Zhang, M. J. O’Connell, and S. K. Doorn, Nat. Mater. 3, 673 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    M. J. Bronikowski, Carbon 107, 297 (2016).CrossRefGoogle Scholar
  12. 12.
    N. Zhang, K. Yu, L. J. Li, and Z. Q. Zhu, Appl. Surf. Sci. 254, 5736 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    N. Zhang, K. Yu, Q. Li, Z. Q. Zhu, and Q. Wan, J. Appl. Phys. 103, 104305 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    K. Yu, Q. Zhang, J. Wu, L. Li, Y. Xu, S. Huang, and Z. Q. Zhu, Nano Res. 1, 221 (2008).CrossRefGoogle Scholar
  15. 15.
    N. Zhang, K. Yu, Q. Li, C. Q. Song, L. Zhu, and Z. Q. Zhu, Mater. Lett. 121, 231 (2014).CrossRefGoogle Scholar
  16. 16.
    Y. E. Xu, M. Luo, and K. Yu, JETP Lett. 105, 1 (2017).CrossRefGoogle Scholar
  17. 17.
    Z. L. Wang, X. Y. Kong, and J. M. Zuo, Phys. Rev. Lett. 91, 185502 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    W. Y. Yang, Z. P. Xie, H. Z. Miao, L. G. Zhang, and L. N. An, J. Phys. Chem. B 110, 3969 (2006).CrossRefGoogle Scholar
  19. 19.
    C. S. Lao, P. X. Gao, R. S. Yang, Y. Zhang, Y. Dai, and Z. L. Wang, Chem. Phys. Lett. 417, 359 (2005).Google Scholar
  20. 20.
    G. Z. Shen, Y. Bando, D. Chen, B. D. Liu, C. Y. Zhi, and D. Golberg, J. Phys. Chem. B 110, 3973 (2006).CrossRefGoogle Scholar
  21. 21.
    Y. S. Lim, J. W. Park, S. T. Hong, and J. Kim, Mater. Sci. Eng. B 129, 100 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.School of Microelectronic of Fudan UniversityShanghaiChina
  2. 2.Department of Electronic EngineeringShang Hai Jian Qiao CollegeShanghaiChina
  3. 3.Department of PhysicsShanghai Second Polytechnic UniversityShanghaiChina
  4. 4.Ministry of Education and Department of Electronic EngineeringEast China Normal UniversityShanghaiChina

Personalised recommendations