Dynamics of heavy carriers in the ferromagnetic superconductor UGe2

  • V. G. Storchak
  • J. H. Brewer
  • D. G. Eshchenko
  • P. W. Mengyan
  • O. E. Parfenov
  • A. M. Tokmachev
Article
  • 3 Downloads

Abstract

Superconductivity and ferromagnetism in a number of uranium-based materials come from the same f-electrons with a relatively large effective mass, suggesting the presence of a band of heavy quasiparticles, whose nature is still a mystery. Here, UGe2 dynamics in both ferromagnetic and paramagnetic phases is studied employing high-field μ+SR spectroscopy. The spectra exhibit a doublet structure characteristic to formation of subnanometer-sized magnetic polarons. This model is thoroughly explored here and correlated with the unconventional physics of UGe2. The heavy-fermion behaviour is ascribed to magnetic polarons; when coherent they form a narrow band, thus reconciling heavy carriers with superconductivity and itinerant ferromagnetism.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Pfleiderer, Rev. Mod. Phys. 81, 1551 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    Z. Fisk, D. W. Hess, C. J. Pethick, D. Pines, J. L. Smith, J. D. Thompson, and J. O. Willis, Science 239, 33 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Phys. Rev. Lett. 43, 1892 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    H. R. Ott, H. Rudiger, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 50, 1595 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    G. R. Stewart, Z. Fisk, J. O. Willis, and J. L. Smith, Phys. Rev. Lett. 52, 679 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    S. S. Saxena, P. Agarwal, K. Ahilan, F.M. Grosche, R. K. W. Haselwimmer, M. J. Steiner, E. Pugh, I. R. Walker, S. R. Julian, P. Monthoux, G. G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite, and J. Flouquet, Nature 406, 587 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, J.-P. Brison, E. Lhotel, and C. Paulsen, Nature 413, 613 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    T. Park, M. J. Graf, L. Boulaevskii, J. L. Sarrao, and J. D. Thompson, Proc. Nat. Acad. Sci. USA 105, 6825 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    R. Troć, Z. Gajek, and A. Pikul, Phys. Rev. B 86, 224403 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    P. Coleman, I. Paul, and J. Rech, Phys. Rev. B 72, 094430 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    P. Coleman, in Handbook of Magnetism and Advanced Magnetic Materials, ed. by H. Kronmüller and S. Parkin, vol. 1, Wiley, Hoboken (2007).Google Scholar
  12. 12.
    N. F. Mott, Metal-Insulator Transitions, Taylor & Francis, London (1990).Google Scholar
  13. 13.
    S. von Molnár and P. A. Stampe, in Handbook of Magnetism and Advanced Magnetic Materials, ed. by H. Kronmüller and S. Parkin, vol. 5, Wiley, Hoboken (2007).Google Scholar
  14. 14.
    J. H. Brewer, in Encyclopedia of Applied Physics, vol. 11, VCH, N.Y. (1994).Google Scholar
  15. 15.
    V. G. Storchak, O. E. Parfenov, J. H. Brewer, P. L. Russo, S. L. Stubbs, R. L. Lichti, D. G. Eshchenko, E. Morenzoni, T. G. Aminov, V. P. Zlomanov, A. A. Vinokurov, R. L. Kallaher, and S. von Molnár, Phys. Rev. B 80, 235203 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    V. G. Storchak, J. H. Brewer, D. J. Arseneau, S. L. Stubbs, O. E. Parfenov, D. G. Eshchenko, E. Morenzoni, and T. G. Aminov, Phys. Rev. B 79, 193205 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    V. G. Storchak, J. H. Brewer, S. L. Stubbs, O. E. Parfenov, R. L. Lichti, P. W. Mengyan, J. He, I. Bredeson, D. Hitchcock, and D. Mandrus, Phys. Rev. Lett. 105, 076402 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    V. G. Storchak, J. H. Brewer, R. L. Lichti, T. A. Lograsso, and D. L. Schlagel, Phys. Rev. B 83, 140404(R) (2011).ADSCrossRefGoogle Scholar
  19. 19.
    V. G. Storchak, J. H. Brewer, D. G. Eshchenko, P. W. Mengyan, O. E. Parfenov, A. M. Tokmachev, P. Dosanjh, Z. Fisk, and J. L. Smith, New J. Phys. 18, 083029 (2016).ADSCrossRefGoogle Scholar
  20. 20.
    V. G. Storchak, J. H. Brewer, D. J. Arseneau, S. L. Stubbs, O. E. Parfenov, D. G. Eshchenko, and A. A. Bush, Phys. Rev. B 79, 220406(R) (2009).ADSCrossRefGoogle Scholar
  21. 21.
    H. Rho, C. S. Snow, S. L. Cooper, Z. Fisk, A. Comment, and J.-P. Ansermet, Phys. Rev. Lett. 88, 127401 (2002).ADSCrossRefGoogle Scholar
  22. 22.
    B. Casals, R. Cichelero, P. G. Fernández, J. Junquera, D. Pesquera, M. Campoy-Quiles, I. C. Infante, F. Sánchez, J. Fontcuberta, and G. Herranz, Phys. Rev. Lett. 117, 026401 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    G. Rimal and J. Tang, Sci. Rep. 7, 42224 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    A. B. Henriques, A. R. Naupa, P. A. Usachev, V. V. Pavlov, P. H. O. Rappl, and E. Abramof, Phys. Rev. B 95, 045205 (2017).ADSCrossRefGoogle Scholar
  25. 25.
    V. G. Storchak, J. H. Brewer, D. G. Eshchenko, P. W. Mengyan, O. E. Parfenov, and D. Sokolov, J. Phys.: Conf. Ser. 551, 012016 (2014).Google Scholar
  26. 26.
    B. D. Patterson, Rev. Mod. Phys. 60, 69 (1988).ADSCrossRefGoogle Scholar
  27. 27.
    Y. Sakurai, M. Itou, E. Yamamoto, Y. Haga, and Y. Onuki, J. Phys. Soc. Jpn. 75, 96 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    A. D. Huxley, S. Raymond, and E. Ressouche, Phys. Rev. Lett. 91, 207201 (2003).ADSCrossRefGoogle Scholar
  29. 29.
    V. G. Storchak and N. V. Prokof’ev, Rev. Mod. Phys. 70, 929 (1998).ADSCrossRefGoogle Scholar
  30. 30.
    A. Yaouanc, P. Dalmas de Réotier, P. C. M. Gubbens, C. T. Kaiser, A. A. Menovsky, M. Mihalik, and S. P. Cottrell, Phys. Rev. Lett. 89, 147001 (2002).ADSCrossRefGoogle Scholar
  31. 31.
    N. Kernavanois, B. Grenier, A. Huxley, E. Ressouche, J. P. Sanchez, and J. Flouquet, Phys. Rev. B 64, 174509 (2001).ADSCrossRefGoogle Scholar
  32. 32.
    V. Guritanu, N. P. Armitage, R. Tediosi, S. S. Saxena, A. Huxley, and D. van der Marel, Phys. Rev. B 78, 172406 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    K. G. Sandeman, G. G. Lonzarich, and A. J. Schofield, Phys. Rev. Lett. 90, 167005 (2003).ADSCrossRefGoogle Scholar
  34. 34.
    A. Harada, S. Kawasaki, H. Mukuda, Y. Kitaoka, Y. Haga, E. Yamamoto, Y. Onuki, K. M. Itoh, E. E. Haller, and H. Harima, Phys. Rev. B 75, 140502(R) (2007).ADSCrossRefGoogle Scholar
  35. 35.
    A. Huxley, I. Sheikin, E. Ressouche, N. Kernavanois, D. Braithwaite, R. Calemczuk, and J. Flouquet, Phys. Rev. B 63, 144519 (2001).ADSCrossRefGoogle Scholar
  36. 36.
    N. Tateiwa, T. C. Kobayashi, K. Hanazono, K. Amaya, Y. Haga, R. Settai, and Y. Onuki, J. Phys.: Condens. Matter 13, L17 (2001).ADSGoogle Scholar
  37. 37.
    C. Pfleiderer and A. D. Huxley, Phys. Rev. Lett. 89, 147005 (2002).ADSCrossRefGoogle Scholar
  38. 38.
    N. Terashima, T. Matsumoto, C. Terakura, S. Uji, N. Kimura, M. Endo, T. Komatsubara, and H. Aoki, Phys. Rev. Lett. 87, 166401 (2001).ADSCrossRefGoogle Scholar
  39. 39.
    V. H. Tran, S. Paschen, R. Troć, M. Baenitz, and F. Steglich, Phys. Rev. B 69, 195314 (2004).ADSCrossRefGoogle Scholar
  40. 40.
    A. C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge University Press, Cambridge (2003).Google Scholar
  41. 41.
    P. Noziéres, J. Low Temp. Phys. 17, 31 (1974).ADSCrossRefGoogle Scholar
  42. 42.
    N. Kabeya, R. Iijima, E. Osaki, S. Ban, K. Imura, K. Deguchi, N. Aso, Y. Homma, Y. Shiokawa, and N. K. Sato, Physica B 404, 3238 (2009).ADSCrossRefGoogle Scholar
  43. 43.
    P. Majumdar and P. B. Littlewood, Nature 395, 479 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. G. Storchak
    • 1
  • J. H. Brewer
    • 2
  • D. G. Eshchenko
    • 3
  • P. W. Mengyan
    • 4
    • 5
  • O. E. Parfenov
    • 1
  • A. M. Tokmachev
    • 1
  1. 1.National Research Center “Kurchatov Institute”MoscowRussia
  2. 2.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  3. 3.Bruker BioSpin AGFällandenSwitzerland
  4. 4.Department of PhysicsNorthern Michigan UniversityMarquetteUSA
  5. 5.Department of PhysicsTexas Tech UniversityLubbockUSA

Personalised recommendations