Dimerization in honeycomb Na2RuO3 under pressure: a DFT study

  • D. D. Gazizova
  • A. V. Ushakov
  • S. V. Streltsov
Article

Abstract

The structural properties of Na2RuO3 under pressure are studied using density functional theory within the nonmagnetic generalized gradient approximation (GGA). We found that one may expect a structural transition at ∼3 GPa. This structure at the high-pressure phase is exactly the same as the low-temperature structure of Li2RuO3 (at ambient pressure) and is characterized by the P21/m space group. Ru ions form dimers in this phase and one may expect strong modification of the electronic and magnetic properties in Na2RuO3 at pressure higher than 3 GPa.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Xu, A. Assoud, N. Soheilnia, S. Derakhshan, H. L. Cuthbert, J. E. Greedan, M. H. Whangbo, and H. Kleinke, Inorg. Chem. 44, 5042 (2005).CrossRefGoogle Scholar
  2. 2.
    Y. Miura, R. Hirai, Y. Kobayashi, and M. Sato, J. Phys. Soc. Jpn. 75, 084707 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    K. Morimoto, Y. Itoh, K. Yoshimura, M. Kato, and K. Hirota, J. Phys. Soc. Jpn. 75, 083709 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    M. A. McGuire, J. Yan, P. Lampen-Kelley, A. F. May, V. R. Cooper, L. Lindsay, A. Puretzky, L. Liang, S. KC, E. Cakmak, S. Calder, and B.C. Sales, Phys. Rev. Mater. 1, 64001 (2017).CrossRefGoogle Scholar
  5. 5.
    E. Lefrancois, M. Songvilay, J. Robert, G. Nataf, E. Jordan, L. Chaix, C.V. Colin, P. Lejay, A. Hadj-Azzem, R. Ballou, and V. Simonet, Phys. Rev. B 94, 214416 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    A. K. Bera, S. M. Yusuf, A. Kumar, and C. Ritter, Phys. Rev. B 95, 094424 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    S. Lee, S. Choi, J. Kim, H. Sim, C. Won, S. Lee, S. A. Kim, N. Hur, and J.G. Park, J. Phys. Condens. Matter 24, 456004 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    D. M. Korotin, V. V. Mazurenko, V. I. Anisimov, and S. V. Streltsov, Phys. Rev. B 91, 224405 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    S. Streltsov, I. I. Mazin, and K. Foyevtsova, Phys. Rev. B 92, 134408 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    I. Zivkovic, K. Prsa, O. Zaharko, and H. Berger, J. Phys. Condens. Matter 22, 56002 (2010).CrossRefGoogle Scholar
  11. 11.
    A. Kitaev, Ann. Phys. (N.Y). 321, 2 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 17205 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    A. Banerjee, C. A. Bridges, J.-Q. Yan, A .A. Aczel, L. Li, M. B. Stone, G. E. Granroth, M. D. Lumsden, Y. Yiu, J. Knolle, D. L. Kovrizhin, S. Bhattacharjee, R. Moessner, D. A. Tennant, D. G. Mandrus, and S. E. Nagler, Nature Materials 15, 733 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    J. Zheng, K. Ran, T. Li, J. Wang, P. Wang, B. Liu, Z.-X. Liu, B. Normand, J. Wen, and W. Yu, Phys. Rev. Lett. 119, 227208 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    A. Banerjee, J. Yan, J. Knolle, C. A. Bridges, M.B. Stone, M. D. Lumsden, D. G. Mandrus, D. A. Tennant, R. Moessner, and S. E. Nagler, Science 356, 1055 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    Y. Miura, Y. Yasui, M. Sato, N. Igawa, and K. Kakurai, J. Phys. Soc. Jpn. 76, 033705 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    Y. Miura, M. Sato, Y. Yamakawa, T. Habaguchi, and Y. Ono, J. Phys. Soc. Jpn. 78, 094706 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    S. A. J. Kimber, I. I. Mazin, J. Shen, H. O. Jeschke, S. V. Streltsov, D. N. Argyriou, R. Valenti, and D. I. Khomskii, Phys. Rev. B 89, 081408 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    J. Park, T.-Y. Tan, D. T. Adroja, A. Daoud-Aladine, S. Choi, D.-Y. Cho, S.-H. Lee, J. Kim, H. Sim, T. Morioka, H. Nojiri, V. V. Krishnamurthy, P. Manuel, M. R. Lees, S. V. Streltsov, D. I. Khomskii, and J.-G. Park, Sci. Rep. 6 25238 (2016).Google Scholar
  20. 20.
    J. C. Wang, J. Terzic, T. F. Qi, F. Ye, S. J. Yuan, S. Aswartham, S. V. Streltsov, D. I. Khomskii, R. K. Kaul, and G. Cao, Phys. Rev. B 90, 161110(R) (2014).Google Scholar
  21. 21.
    V. V. Gapontsev, E. Z. Kurmaev, C. I. Sathish, S. Yun, J.-G. Park, and S.V. Streltsov, J. Phys. Condens. Matter 29, 405804 (2017).CrossRefGoogle Scholar
  22. 22.
    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).ADSCrossRefGoogle Scholar
  23. 23.
    G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  24. 24.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).ADSCrossRefGoogle Scholar
  25. 25.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  26. 26.
    O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).ADSCrossRefGoogle Scholar
  27. 27.
    M. P. Jimenez-Segura, A. Ikeda, S. Yonezawa, and Y. Maeno, Phys. Rev. B 93, 75133 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press (2004).CrossRefMATHGoogle Scholar
  29. 29.
    S. V. Streltsov and D. I. Khomskii, Proc. Natl. Acad. Sci. 113, 10491 (2016).CrossRefGoogle Scholar
  30. 30.
    S. V. Streltsov and D. I. Khomskii, Physics-Uspekhi 60, 1121 (2017).ADSCrossRefGoogle Scholar
  31. 31.
    V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).ADSCrossRefGoogle Scholar
  32. 32.
    G. Biroli and G. Kotliar, Phys. Rev. B 65, 155112 (2002).ADSCrossRefGoogle Scholar
  33. 33.
    V. Hermann, M. Altmeyer, J. Ebad-Allah, F. Freund, A. Jesche, A. A. Tsirlin, M. Hanfland, P. Gegenwart, I. I. Mazin, D. I. Khomskii, R. Valenti, and C. A. Kuntscher, Phys. Rev. B 97, 20104 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • D. D. Gazizova
    • 1
    • 2
  • A. V. Ushakov
    • 2
  • S. V. Streltsov
    • 1
    • 2
  1. 1.Ural Federal UniversityEkaterinburgRussia
  2. 2.Institute of Metal PhysicsRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations